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Preface 
 
 
 

The Sixth International Symposium on Recent Advances in Quantitative Remote Sensing 
was held in Torrent, Spain from 19 to 23 September 2022. It was sponsored and organized 
by the Global Change Unit (GCU) from the Image Processing Laboratory (IPL), University 
of Valencia (UVEG), Spain. Other sponsors include: 
 

- City Council of Torrent (Spain); 
- L’Auditori Torrent (Spain); 
- European Space Agency (ESA); 
- National Aeronautics and Space Administration (NASA); 
- EOLAB; 

 
This Symposium addressed the scientific advances in quantitative remote sensing in 
connection with real applications. Its main goal was to assess the state of the art of both 
theory and applications in the analysis of remote sensing data, as well as to provide a forum 
for researcher in this subject area to exchange views and report their latest results. In this 
book 35 of the 188 contributions presented in both plenary and poster sessions are arranged 
according to the scientific topics selected. The papers are ranked in the same order as the 
final programme.  
 
To conclude, I would particularly like to thank the participants who have contributed to 
constructive discussions and the members of the International Scientific Committee, who 
greatly contributed to select the papers presented at the Symposium providing an attractive 
scientific programme. The success is also due to the efforts made by the Organizing 
Committee. Many thanks to all of them.  
 
 

José A. Sobrino 
Symposium Chairperson 

Global Change Unit, 
Universitat de València 

 
Valencia, 2023 
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Earth Surface Temperature evolution during the years 2003-2020 from 
MODIS data  
 

 
J. A. Sobrino, S. García-Monteiro, Y. Julien 
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José Beltrán, 2. 46980 Paterna, Valencia, Spain.  
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ABSTRACT - The present work shows the estimation of the surface temperature of Planet Earth with MODIS 

Terra and Aqua Land (LST) and Sea Surface Temperature (SST) products for the years 2003-2021. The results 
corroborate the temperature anomalies retrieved from climate models and show a rate of warming higher that 0.2 
°C per decade. Furthermore, the MODIS surface temperature retrievals are compared with the NOAA’s NCDC 
air temperature estimations, showing high correlations for the global EST (0.96), LST (0.93) and SST (0.94). As 
an specific application,  Lake Surface Water Temperature (LSWT) is estimated for ten of the largest lakes in the 
world by using MODIS Level 3 SST Thermal IR 8 Day 4km Version 2019.0 product at a high precision during the 
timespan 2003-2020. The selected lakes are the Caspian Sea, Superior, Victoria, Huron, Michigan, Tanganyika, 
Baikal, Great Slave Lake, Erie and Ontario lakes. LSWT trends show positive warming rates for every lake, with 

values ranging between 0.012°C/yr for Victoria Lake and 0.083°C/yr for Baikal Lake. Our LSWT estimations have 
been validated in the Laurentian Great Lakes, obtaining correlations between 0.96-0.99 respect Moukomla and 
Blanken (2016) research, which used the MOD11L2 LST product considering the years 2003-2014.. Despite 
MODIS SST product used is designed to retrieve SST by applying a specific SST algorithm, it also provides 
accurate information about freshwater extension and this work has demonstrated its functionality for estimating 
LSWT. 
Keywords - MODIS, trend, global warming, Sea Surface Temperature, Land Surface Temperature, Lake Surface 
Water Temperature 

 
1. INTRODUCTION 

 
The IPCC’s Fifth Assessment Report provided the 
scientific input into the Paris Agreement (Field et al., 

2014), which aims to strengthen the global response to 
the threat of climate change by holding the increase in 
the global average temperature to well below 2 ⁰C 
above pre-industrial levels and to pursue efforts to limit 
the temperature increase to 1.5 ⁰C above pre-industrial 
levels. For this reason, estimating both Sea Surface 
Temperature (SST) and Land Surface Temperature 
(LST) in an accurate way is a priority task to achieve 

the IPCC’s Report objective.  
Traditionally, surface temperature has been measured 
by using in situ instruments, which are irregularly 
distributed and differently calibrated (Sobrino et al., 
2020a). This means that adjustments must be made in 
an attempt to homogenize temperature data from such 
varied sources. On the other hand, in situ instruments 
have the advantage of measuring data directly, without 
a column of air in between the water and instrument, as 

in the satellite case. 
In contrast to the measurements provided by in situ 
sources, satellites make global and continuous 
observations of the planet surface (Sobrino et al., 
2020b; Garcia-Monteiro, et al., 2022). by the same 

thermal sensor of a known uncertainty. This means no 

residual uncertainties are going to be carried due to 
different calibration methods or instrument 
uncertainties. 
The following work aims to give an overall view of the 
evolution of the EST, SST and LST during the years 
2003-2021, estimated from MODIS retrievals, to 
compare results with the NOAA’S NCDC widely used 
air temperature dataset and to highlight the value of 

satellite thermal observations in their application to 
climate studies. 
On the other hand, Lake Surface Water Temperature 
(LSWT) is an Essential Climate Variable recognized 
by the Global Observing System for Climate (GCOS) 
and it is an indicator of how climate change is affecting 
worldwide lake physical dynamics and ecosystems Ten 
large lakes have been selected for developing this 

study: the Caspian Sea, Superior, Victoria, Huron, 
Michigan, Tanganyika, Baikal, Great Slave Lake, Erie 
and Ontario lakes in order to retrieve their LSWT, in 
absolute and trend terms. 
LSWT will be retrieved for the ten lakes mentioned 
above by using MODIS Level 3 SST Thermal IR 8 Day 
4km V2019.0 product in order to show how it functions 
when estimating surface temperature of freshwater 

extensions non-connected to the open water. Our 
results will be validated by a previous study focused on 
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the Laurentian Great Lakes and which uses an LST 
MODIS product (Moukomla and Blanken, 2016). 
Furthermore, LSWT trends will be estimated to analyse 
the behaviour of this parameter during the last years. 
 
2.MATERIAL AND METHODS 
 

2.1. Study sites (lakes) 
 
Ten large lakes have been selected for developing this 
study: the Caspian Sea, the only saline lake included; 
the Superior, Michigan, Huron, Ontario and Erie 
Lakes, called the Great Lakes, which occupy part of the 
territory of the United States of America and Canada; 
the Victoria and Tanganyika lakes, located in the 

African continent; the Baikal lake in Russia and the 
Slave lake in Canada (table 1) (Dumont, 2003; United 
States Environmental Protection Agency, 2022; Swain 
and Shannon, 1980; Verburg, P. et al., 2003; 
Zimmerman et al., 2006). 
 

Table 1. Metric characteristics of the ten lakes 

considered in the study. 

Lake Cont 
Area 

(km2) 

Vol 

(km3) 

Max.  

depth 

(m) 

Caspian 

Sea 
Asia 371,0 78,2 1,025 

Superior America 82,1 12,1 406.3 
Victoria Africa 68,9 2,8 84 
Huron America 59,6 3,5 229 

Michigan America 58,0 4,9 281 
Tanganyika Africa 32,6 18,9 1,470 

Baikal Asia 31,5 23,6 1,620 
Slave America 27,0 1,6 614 
Erie America 25,7 489 64 

Ontario America 18,9 1,639 244 

 

2.2. Data sets 
 

The SST product used in this study is MODIS Level 3 

SST Thermal IR 8 Day 4km V2019.0, which is freely 
available in https://podaac.jpl.gov. 8-days composites 
have been considered as ideal for this work, as they 
allow both to save storage capacity and to reduce 
computational costs. 
3450 images have been computed for the years 2003-
2020 (1723 images associated to MODIS-Terra and 
1727 images associated to MODIS-Aqua). Each image 

is a global dataset with a spatial resolution of 4.63 km 
and 8640x4320 pixels dimensions. A mask has been 
applied in order to consider only the area corresponding 
to each lake, step that will be explained with more 
detail in the methodology section. 

The algorithm of the MODIS SST product used in this 
work uses seven latitudinal bands in 20⁰ intervals from 
0⁰ to 60⁰ and then, a single interval from 60⁰ to the poles 
(Kilpatrick et al, 2019; Jia, 2019; Jia and Minett, 2020) 
for setting coefficients for the different atmospheric 
regions at a certain month of the year. These 
coefficients are continuously updated and validated by 

the Rosenstiel School of Marine and Atmospheric 
Science (RSMAS) at the University of Miami (Brown 
and Minnett, 1999). The product applies the long-wave 
algorithm, which considers MODIS bands 31 and 32 at 
11 μm and 12 μm, respectively (Goddard Space Flight 
Center, 2014) 
When referring to errors, the product’s Algorithm 
Technical Background Document (ATBD) establishes 

an uncertainty of 0.45K at nadir and 0.56K at 45⁰. 
Several researchers have validated the MODIS SST 
product at global and regional scales: Sobrino et al. 
(2020a) estimated de global Sea Surface Temperature 
(SST) with a median evaluated uncertainty of 0.10 in 
the period 2003-2016; Reinart and Reinhold (2008) 
obtained errors of 0.40⁰C when applying the product to 
Swedish lakes by using MODIS-Terra images and 

considering the period 2001-2003. 
For LST retrieval, the product selected is MOD11C2 
(MODIS-Terra) and MYD11C2 (MODIS-Aqua), 8-
days composites at 0.05º resolution. Uncertainties 
range between 0.88K and 1.63K depending on the 
observation angle and water vapour content (Wan, 
2004). A total of 3497 images have been processed 
(1748 images from MODIS-Terra and 1749 images 

from MODIS-Aqua).  
 
2.3. Methodology 

 
The methodology applied is based on the one proposed 
by Sobrino et al. (2020b) to estimate SST at a global 
level and which has been shown to be valid at regional 
scales too (García-Monteiro et al., 2022). 
SST means are estimated by following equation 1, 

where 𝑆𝑆𝑇𝑚𝑒𝑎𝑛
𝑡  is the SST for each area considered at 

a certain time, t; 𝑆𝑆𝑇𝑖𝑗
𝑡 , the SST for each pixel ij at a 

time t; m is the column pixel dimension and n, the row 
pixel dimension; Aij, is the area of every pixel of i,j 
dimensions and Alake, the total area of each lake, only 
considering cloud free pixels. 

𝑆𝑆𝑇𝑚𝑒𝑎𝑛
𝑡 =

1

𝐴𝑡𝑜𝑡𝑎𝑙
∑ ∑ 𝐴𝑖𝑗

𝑛

1

𝑚

1

𝑆𝑆𝑇𝑖𝑗
𝑡  

For each 8-day period, four observations are 
considered, Terra and Aqua, daytime and nighttime, 
whose passing times are the following: 10:30, 13:30, 
22:30 and 01:30. For each pixel, the four data average 
has been calculated according to Eq. 2. (Mao et al., 
2017). The timespan selected starts in the year 2003 
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because, despite Terra provides data since 2001, Aqua 
wan launched in 2002 and did not made data available 
until the year 2003. Therefore, the first complete year, 
with four measures per image is 2003. 
 

𝑆𝑆𝑇𝑀𝑂𝐷𝐼𝑆 = (
𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(10:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(13:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(22:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(01:30)

4
) 

 
The product ATBD assesses the pixel quality through 
the Quality Control variable. We have taken this 
information into account an only included on 

computations those pixels of good or acceptable 
quality, meaning Quality Control values of 0 and 1, 
respectively. Furthermore, an additional filter has been 
applied to results with the aim or removing outliers 
based on the Z-score method. Linear regressions have 
been used to estimate trends and develop validations. 
In addition, the Sen’s slope method and Mann-Kendal 
test have been run out to estimate trends with an 

associated level of confidence. 
For each lake, monthly and annual SST means have 
been computed as shown in Eq. 1 A mask for each lake 
considered has been elaborated and applied, in order to 
include in computations only de study sites selected. 
Once the different regions of interest are cropped, the 
SST is estimated applying the methodology mentioned 
above. 

 
3. RESULTS & DISCUSSION 

 
3.2. Earth Surface Temperature 

 
MODIS EST, SST and LST global estimations are 
compared with NOAA’ NCDC air temperature merged 
land-ocean, land and ocean surface temperature 

measurements in figure 1. 
For EST, the linear trends estimated are of 
0.0202±0.0008⁰C/yr for MODIS EST and 0.022⁰C/yr 
for NOAA NCDC anomalies Results show a high 
correlation between MODIS EST estimations and 
NOAA NCDC air temperature global data, interpolated 
from in situ sources, with a 0.96 value. MODIS EST 
trend has also been estimated by the Sen’s slope 
method, obtaining 0.020⁰C/yr, as for the linear method, 

with a confidence level of 99.9%, showing the high 
potential of MODIS thermal infrared satellite data as a 
source of input data for global surface temperature 
estimations and for global change studies 
In the LST case, the correlation is of 0.93 between both 
data sets with a significance higher than 99.9%. Linear 
trends are defined as 0.025±0.001⁰C/yr for the MODIS 
LST and 0.032⁰C/yr for the NOAA’S NCDC 

anomalies. As for EST, the Sen’s slope trend has also 
been calculated, with a similar resulting value, 
0.023⁰C/yr and a Mann-Kendall significance of 99.7%. 

For the SST variable, the correlation between NOAA 
NCDC anomalies and MODIS retrievals is 0.94, 
slightly improving the LST results. The SST trend is 
0.018⁰C/yr in both cases, confirmed by the Sen’s slope 
method with a 99.7% of confidence. The trend 
uncertainty for the MODIS linear estimation is 
0.0008⁰C/yr. 

 

 
Figure 1. MODIS and NOAA’S NCDC air 

temperature comparison for EST, SST and LST. 
 

Global surface temperature trend maps, as well as the 
Mann-Kendal significance map, are shown in figure 2.  
The global trends are 0.020⁰C/yr for EST, 0.018⁰C/yr 

for SST and 0.023⁰C/yr for LST, given at a confidence 
level higher than 99%.  
For the LST variable, positive trends are found for large 
areas of the central and Eastern Europe, Scandinavia 
and Siberia. In the American continent, peninsulas of 
California and Florida, and in northeastern Brazil and 
Patagonia. Negative trends appear mainly in the Indian 
Peninsula and in eastern longitudes of Antarctica.  

In the SST case, negative trends are found in the North 
Atlantic Ocean, Greenland, in the North Pacific, the 
Sea of Japan, the Yellow Sea and in the Southern 
Ocean. On the other hand, positive trends are 
irregularly distributed along NH low and mid-latitudes 
and in the Atlantic and Pacific Oceans, next to the 
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North American and Australian Continent and the 
Arctic Circle. 
 

Sen’s slope trend 

  

 
Mann-Kendal test 

 
Figure 2. Sen’s slope trend and Mann-Kendal 
confidence level in maps 
 
 
3.3. Lake Surface Water Temperature validation 

 
Our MODIS results have been validated with 

Moukomla and Blanken (2016) results. They estimated 
the Great Lakes Surface Temperature from the 6th of 
July 2001 and the 31st of December 2014 by merging 
skin temperature derived from the MODIS Land 
Surface Temperature (MOD11L2) and the MODIS 
Cloud product (MOD06L2). They validated their 
temperature estimations with in situ data from buoys 
belonging to the NOAA National Data Buoy Center, 
obtaining R-squared values ranging from 0.4975 to 

0.9560 from regressions. 
Figure 3 shows the regressions carried out considering 
our results respect the Moulomla and Blanken (2016) 
paper results. Correlations between both data sets are 

in the interval of 0.962-0.998, demonstrating, on one 
hand, that the retrievals of both products are in the same 
line and on the other, that our methodology is capable 
of generating valid SST estimations in lake water 
surfaces. 
 

  

  

 
Figure 3. Results validation. MODIS SST products 
monthly estimations are compared with the results of 
Moukomla and Blanken (2016) for the Great Leaks. 
The timespan considered is 2003-2014. The correlation 
coefficients obtained ranges between 0.962 and 0.998. 
 
3.4. Lake Surface Water Temperature in ten of the 

largest lakes of the world 
 

Once the reliability of the MODIS SST product for 
LSWT estimations has been established, LSWT trends 
for the years 2003-2020 have been estimated for the 
Caspian Sea, Superior, Victoria, Huron, Michigan, 
Tanganyika, Baikal, Great Slave Lake, Erie and 
Ontario by both the linear and Sen’s slope methods. 

The confidence level is offered by carrying out the 
Mann-Kendal test. The mean LSWT for the whole 
timespan is also provided (table 2). 
The MODIS Level 3 SST Thermal IR 8 Day 4km 
V2019.0 provides complete data (including four daily 
measures) from 2003 onwards. AVHRR enables a 
more comprehensive data period for both LST and SST 
variables but, in contrast, their satellites induce 

variability due to their orbital drift (Price, 1990; 
Sobrino et al., 2008 Julien and Sobrino, 2012). For this 
reason, MODIS time series have been selected for this 
study in detriment of AVHRR.  
Positive trends are found in the ten lakes analysed 
(table 2) for both the linear and Sen’s slope trend 
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estimation methods. The higher LSWT trend estimated 
is found for Lake Baikal, 0.083⁰C/yr at a 99.79% 
confidence level, whereas the lower trend is found in 
Lake Victoria, 0.012⁰C/yr. Results show a high Mann-
Kendall level (>95%) in the case of the Tanganyka and 
Erie lakes, with warming rates of 0.017⁰C/yr and 
0.058⁰C/yr, respectively. 

From the absolute LSWT values, the Tanganyka and 
Victoria lakes are the warmer lakes among the lakes 
considered and show the lower data variability through 
time, established by their standard deviations. These 
absolute LSWT are 25.76±0.18⁰C for the Victoria Lake 
and 26.95±0.16⁰C for the Tanganyka Lake. On the 
other hand, the colder lakes are represented by the 
Baikal Lake, 6.3±0.6⁰C, and the Superior Lake, 

6.8±0.8⁰C. 
 
Table 2. Annual trends estimated for the lakes analysed 
during the years 2003-2020 by the linear and Sen’s 
slope methods. The results’ confidence is given by the 
Mann-Kendal test (significant results are highlighted 
in bold). 

Lake 

Mean 

LSWT 

(⁰C) 

Linear 

trend 

(⁰C) 

Sen’s 

slope 

(⁰C) 

Mann-

Kendal  

(%) 

Caspian 

Sea 

16.3±0.5 0.037 0.044 87.97 

Superior 6.8±0.8 0.002 0.013 37.76 

Victoria 25.76±0.18 0.012 0.012 72.85 

Huron 9.1±0.6 0.031 0.029 69.37 

Michigan 9.9±0.8 0.025 0.029 61.64 

Tanganyika 26.95±0.16 0.015 0.017 96.93 

Baikal 6.3±0.6 0.082 0.083 99.79 

Slave 6.9±0.7 0.041 0.056 78.88 

Erie 11.7±0.5 0.043 0.058 95.53 

Ontario 10.5±0.7 0.043 0.047 65.64 

 
Sobrino et al. (2020b) established a global SST trend 

of 0.019⁰C/yr for the years 2003-2019. Assuming this 
value for the present timespan and attending to the 
Sen’s slope trends estimated in this paper, seven of the 
ten lakes analysed exceed this value: Caspian Sea 
(0.044⁰C/yr), Huron (0.029⁰C/yr), Michigan 
(0.029⁰C/yr), Baikal (0.083⁰C/yr), Slave Lake 
(0.056⁰C/yr), Erie (0.058⁰C/yr) and Ontario 
(0.047⁰C/yr). In this way, the general overview shows 
that lakes are warming at a higher rate than the global 

water surfaces. 
 

4.  CONCLUSIONS 
 

The comparison between the planetary MODIS Earth 
Surface Temperature (EST) presented in this work and 
the NOAA-NCDC air temperature data shows a 
correlation coefficient of 0.96 between the two 

databases, demonstrating the high potential of thermal 
infrared satellite data to provide accurate data for 

climatic and meteorological studies. Satellite data are 
essential in the monitoring of SST, LST and EST as a 
solid source of continuous data in space and time.  
The global EST trend is 0.020 °C/yr, 0.018°C/yr for 
SST trends and 0.025°C/yr for the LST parameter. SST 
shows less variability in time than LST and a higher 
influence on EST, as sea surface extension dominates 

over the land surface extension. This proceeding has 
covered not only the trends observed from satellites but 
also the current estimations of air temperature. We 
consider that satellite data used be used to estimate 
anomalies of the average temperature of the Earth’s 
surface and be included in the IPCC assessment reports 
When referring to lakes, they are freshwater enclosed 
extensions in which there is no exchange with open 

waters. For this reason, the initial hypothesis of this 
work was that they could suffer to a greater extent form 
the effect of global warming. Results show positive 
LSWT trend for the ten lakes considered: the Caspian 
Sea, Superior, Victoria, Huron, Michigan, Tanganyika, 
Baikal, Great Slave Lake, Erie and Ontario lakes. 
Furthermore, when considering the current SST 
warming rate, established in 0.018⁰C/yr for the whole 

sea surfaces, seven of these ten lakes exceed this trend. 
The sample size is limited enough to prevent 
generalizing that LSWT is warming at a higher rate 
than SST, but it can be affirmed that the LSWT of 
seven of the largest lakes of the world is increasing at 
an accelerated rate. The highest LSWT is found for 
Lake Baikal, with 0.083⁰C/yr, nearly five times the 
global SST trend, whereas the lowest trend is 

associated to Victoria Lake, with 0.012⁰C/yr. 
The MODIS Level 3 SST Thermal IR 8 Day 4km 
V2019.0 achieves SST retrieval by applying a specific 
SST algorithm. However, it also provides information 
about freshwater extension and this paper has 
demonstrated its functionality in this type of 
ecosystems. The validations carried out show 
correlations between 0.96 and 0.99 with results 
provided by previous literature.  

Remote sensing is a valuable technology which 
provides homogeneous and periodic data from the 
whole Earth’s surface. Its main disadvantage is the 
impossibility of collecting data below clouds. This 
weakness is overcome by the satellite temporal 
resolution that means 4 passes per day. The low 
uncertainty of results confirms its reliability, 
strengthened by the validation that has been carried out.  

The LSWT is positioned as a parameter of climatic 
interest, already recognized as an Essential Climate 
Variable by the World Meteorological Organization, 
which reflects global warming in an amplified way. As 
for other ECVs, such as SST, the LSWT must be 
continuously monitored, as it is an indicator of the 
behaviour of the surface temperature of the planet. 
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ABSTRACT - Lake Surface Water Temperature (LSWT) is an Essential Climate Variable recognized by the 

Global Observing System for Climate (GCOS). In this work, LSWT is estimated for ten of the largest lakes in the 
world by using MODIS Level 3 SST Thermal IR 8 Day 4km Version 2019.0 product at a high precision during the 
timespan 2003-2020. The selected lakes are the Caspian Sea, Superior, Victoria, Huron, Michigan, Tanganyika, 
Baikal, Great Slave Lake, Erie and Ontario lakes. Absolute LSWT values have been estimated for each lake, 
obtaining the minimum average for Baikal lake (6.6±0.6°C) and the maximum for Tanganyika Lake (26.95±0.16) 
°C. LSWT trends show positive warming rates for every lake, with values ranging between 0.012°C/yr for Victoria 
Lake and 0.083°C/yr for Baikal Lake. Our LSWT estimations have been validated in the Laurentian Great Lakes, 
obtaining correlations between 0.96-0.99 respect Moukomla and Blanken (2016) research, which used the 

MOD11L2 LST product considering the years 2003-2014. Sentinel 2 estimations have also been included in the 
validation, represented by sensor SLSTR retrievals for the Issyk-Kul Lake during the year 2020. In this case, the 
correlation is 0.99 between MODIS and SLSTR estimations, with a 0.33°C bias, lower MODIS’ SST uncertainties 
at nadir. Despite MODIS SST product used is designed to retrieve SST by applying a specific SST algorithm, it 
also provides accurate information about freshwater extension and this work has demonstrated its functionality 
for estimating LSWT. 
Keywords - Lake Surface Water Temperature, MODIS, trend, global warming. 

 

 
1. INTRODUCTION 

 
Lake Surface Water Temperature (LSWT) is 
recognized as an Essential Climate Variable (ECV) by 
the Global Observing System for Climate (GCOS, 
2016), working as an indicator of how climate change 

is affecting worldwide lake physical dynamics and 
ecosystems. It has been proved that the behaviour of 
this ECV conditions several processes, such as the 
fisheries’ presence and catches (Gamito et al., 2015), 
the alternation between rainy and dry seasons (Liu et 
al., 2020; Zhang et al., 2001) or the climatic oscillations 
dynamics (McPhaden et al., 2006; Lindsey and 
Dahlman, 2009). For this reason, it is crucial to monitor 

ECVs, in order to better understand these processes, 
among others, and be prepared to face the changes they 
may face. 
LSWT has traditionally been estimated by using in situ 
instruments, heterogeneous, irregularly distributed and 
differently calibrated (De Santis et al., 2021; Sobrino et 
al., 2020a). Remote sensing solves these in situ 
measurements disadvantages and provides continuous 

temporal series data, retrieved from the same sensor 
observations, with a given uncertainty, the identical for 
each observation.  

As a consequence, it is becoming increasingly common 
to find in the literature studies whose objective is to 

analyze the LSWT from satellite data (Ghasemifar et 
al., 2019; Zhang et al., 2014; Crosman and Horel, 
2009). 
It is clear that LSWT is a variable to consider when 
studying lakes and has more implications than simple 
variations in lake temperatures. For this reason, we 
propose to develop a study that considers the most 
representative lakes in the world, to know their LSWT 
behaviour during the last years, from 2003 to 2020, by 

using MODIS data. The lakes selected are the Caspian 
Sea, Superior, Victoria, Huron, Michigan, Tanganyika, 
Baikal, Great Slave, Erie and Ontario lakes. 
The aim of this contribution is to retrieve the LSWT of 
the ten lakes mentioned above by using MODIS Level 
3 SST Thermal IR 8 Day 4km V2019.0 product in order 
to show how it functions when estimating surface 
temperature of freshwater extensions non-connected to 

the open water.  
Our results will be validated by a previous study 
focused on the Laurentian Great Lakes and which uses 
an LST MODIS product (Moukomla and Blanken, 
2016). Furthermore, LSWT trends will be estimated to 
analyse the behaviour of this parameter during the last 
years. 
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2.MATERIAL AND METHODS 
 
2.1. Study sites 

 
Ten large lakes have been selected for developing this 
study: the Caspian Sea, the only saline lake included; 
the Superior, Michigan, Huron, Ontario and Erie 

Lakes, called the Great Lakes, which occupy part of the 
territory of the United States of America and Canada; 
the Victoria and Tanganyika lakes, located in the 
African continent; the Baikal lake in Russia and the 
Slave lake in Canada (table 1) (Dumont, 2003; United 
States Environmental Protection Agency, 2022; Swain 
and Shannon, 1980; Verburg, P. et al., 2003; 
Zimmerman et al., 2006). 

 
Table 1. Metric characteristics of the ten lakes 

considered in the study. 

Lake Cont 
Area 

(km2) 

Vol 

(km3) 

Max.  

depth 

(m) 

Caspian 

Sea 
Asia 371,0 78,2 1,025 

Superior America 82,1 12,1 406.3 
Victoria Africa 68,9 2,8 84 
Huron America 59,6 3,5 229 

Michigan America 58,0 4,9 281 
Tanganyika Africa 32,6 18,9 1,470 

Baikal Asia 31,5 23,6 1,620 
Slave America 27,0 1,6 614 
Erie America 25,7 489 64 

Ontario America 18,9 1,639 244 

 
 
2.2. Data sets 

 
The product used in this study is MODIS Level 3 SST 
Thermal IR 8 Day 4km V2019.0, which is freely 
available in https://podaac.jpl.gov. 8-days composites 

have been considered as ideal for this work, as they 
allow both to save storage capacity and to reduce 
computational costs. 
3450 images have been computed for the years 2003-
2020 (1723 images associated to MODIS-Terra and 
1727 images associated to MODIS-Aqua). Each image 
is a global dataset with a spatial resolution of 4.63 km 
and 8640x4320 pixels dimensions. A mask has been 

applied in order to consider only the area corresponding 
to each lake, step that will be explained with more 
detail in the methodology section. 
The algorithm of the MODIS SST product used in this 
work uses seven latitudinal bands in 20⁰ intervals from 
0⁰ to 60⁰ and then, a single interval from 60⁰ to the poles 
(Kilpatrick et al, 2019; Jia, 2019; Jia and Minett, 2020) 
for setting coefficients for the different atmospheric 
regions at a certain month of the year. These 

coefficients are continuously updated and validated by 
the Rosenstiel School of Marine and Atmospheric 
Science (RSMAS) at the University of Miami (Brown 
and Minnett, 1999). The product applies the long-wave 
algorithm, which considers MODIS bands 31 and 32 at 
11 μm and 12 μm, respectively (Goddard Space Flight 
Center, 2014).   

When referring to errors, the product’s Algorithm 
Technical Background Document (ATBD) establishes 
an uncertainty of 0.45K at nadir and 0.56K at 45⁰. 
Several researchers have validated the MODIS SST 
product at global and regional scales: Sobrino et al. 
(2020a) estimated de global Sea Surface Temperature 
(SST) with a median evaluated uncertainty of 0.10 in 
the period 2003-2016; Reinart and Reinhold (2008) 

obtained errors of 0.40⁰C when applying the product to 
Swedish lakes by using MODIS-Terra images and 
considering the period 2001-2003. 
 
2.3. Methodology 

 
The methodology applied is based on the one proposed 
by Sobrino et al. (2020b) to estimate SST at a global 

level and which has been shown to be valid at regional 
scales too (García-Monteiro et al., 2022). 
As a first step, a mask for each lake considered has been 
elaborated and applied, in order to include in 
computations only de study sites selected. Once the 
different regions of interest are cropped, the SST is 
estimated applying the methodology mentioned above. 
For each lake, the monthly and annual SST have been 

computed as shown in Eq. 1, where 𝑆𝑆𝑇𝑙𝑎𝑘𝑒
𝑡  is the SST 

for each lake at a certain time, t; 𝑆𝑆𝑇𝑖𝑗
𝑡 , the SST for each 

pixel ij at a time t; m is the column pixel dimension and 

n, the row pixel dimension; Aij, is the area of every 
pixel of i,j dimensions and Alake, the total area of each 
lake, only considering cloud free pixels. 

𝑆𝑆𝑇𝑙𝑎𝑘𝑒
𝑡 =

1

𝐴𝑙𝑎𝑘𝑒
∑ ∑ 𝐴𝑖𝑗

𝑛

1

𝑚

1

𝑆𝑆𝑇𝑖𝑗
𝑡  

For each 8-day period, four observations are 
considered, Terra and Aqua, daytime and nighttime, 
whose passing times are the following: 10:30, 13:30, 
22:30 and 01:30. For each lake, the four data average 
has been calculated according to Eq. 2. (Mao et al., 
2017). The timespan selected starts in the year 2003 
because, despite Terra provides data since 2001, Aqua 
wan launched in 2002 and did not made data available 

until the year 2003. Therefore, the first complete year, 
with four measures per image is 2003. 

𝑆𝑆𝑇𝑀𝑂𝐷𝐼𝑆

= (
𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(10:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(13:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(22:30)
+ 𝑆𝑆𝑇𝑚𝑒𝑎𝑛

(01:30)

4
) 
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The product ATBD assesses the pixel quality through 
the Quality Control variable. We have taken this 
information into account an only included on 
computations those pixels of good or acceptable 
quality, meaning Quality Control values of 0 and 1, 
respectively. Furthermore, an additional filter has been 
applied to results with the aim or removing outliers 

based on the Z-score method. Linear regressions have 
been used to estimate trends and develop validations. 
In addition, the Sen’s slope method and Mann-Kendal 
test have been run out to estimate trends with an 
associated level of confidence. 
 
3. RESULTS & DISCUSSION 
 

3.1. Validation 
 

Our MODIS results have been validated with 
Moukomla and Blanken (2016) results. They estimated 
the Great Lakes Surface Temperature from the 6th of 
July 2001 and the 31st of December 2014 by merging 
skin temperature derived from the MODIS Land 
Surface Temperature (MOD11L2) and the MODIS 

Cloud product (MOD06L2). They validated their 
temperature estimations with in situ data from buoys 
belonging to the NOAA National Data Buoy Center, 
obtaining R-squared values ranging from 0.4975 to 
0.9560 from regressions. 
 

  

  

 
Figure 1. Results validation. MODIS SST products 
monthly estimations are compared with the results of 
Moukomla and Blanken (2016) for the Great Leaks. 
The timespan considered is 2003-2014. The correlation 
coefficients obtained ranges between 0.962 and 0.998. 
 

Figure 1 shows the regressions carried out considering 
our results respect the Moulomla and Blanken (2016) 
paper results. Correlations between both data sets are 
in the interval of 0.962-0.998, demonstrating, on one 
hand, that the retrievals of both products are in the same 
line and on the other, that our methodology is capable 
of generating valid SST estimations in lake water 

surfaces. 
Our validation is extended by considering Hernández-
Galindo (2022) work which uses Sentinel’s 3 SLSTR 
data to estimate monthly LSWT of the Issyk-Kul lake, 
in Kyrgyzstan for the year 2020 (figure 2). We have 
reproduced their methodology to estimate the lake’s 
LSWT but using MODIS SST product data. As the 
SLSTR observations are made between 10 and 11 a.m., 

only Terra’s diurnal images have been used, whose 
passing time is 10:30 a.m. 

  
Figure 2. Monthly LSWT for the Issyk-Kul lake in the 
year 2020 for the MODIS and SLSTR SST estimations 
(left). Linear regression for both products (right). 
 

3.2. Lake Surface Water Temperature in ten of the 
largest lakes of the world 
 

Once the reliability of the MODIS SST product for 
LSWT estimations has been established, LSWT trends 
for the years 2003-2020 have been estimated for the 
Caspian Sea, Superior, Victoria, Huron, Michigan, 
Tanganyika, Baikal, Great Slave Lake, Erie and 

Ontario by both the linear and Sen’s slope methods. 
The confidence level is offered by carrying out the 
Mann-Kendal test. The mean LSWT for the whole 
timespan is also provided (table 2). 
The MODIS Level 3 SST Thermal IR 8 Day 4km 
V2019.0 provides complete data (including four daily 
measures) from 2003 onwards. AVHRR enables a 
more comprehensive data period for both LST and SST 
variables but, in contrast, their satellites induce 

variability due to their orbital drift (Price, 1990; 
Sobrino et al., 2008 Julien and Sobrino, 2012). For this 
reason, MODIS time series have been selected for this 
study in detriment of AVHRR.  
Positive trends are found in the ten lakes analysed 
(table 2) for both the linear and Sen’s slope trend 
estimation methods. The higher LSWT trend estimated 
is found for Lake Baikal, 0.083⁰C/yr at a 99.79% 

confidence level, whereas the lower trend is found in 
Lake Victoria, 0.012⁰C/yr. Results show a high Mann-
Kendall level (>95%) in the case of the Tanganyka and 
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Erie lakes, with warming rates of 0.017⁰C/yr and 
0.058⁰C/yr, respectively. 
From the absolute LSWT values, the Tanganyka and 
Victoria lakes are the warmer lakes among the lakes 
considered and show the lower data variability through 
time, established by their standard deviations. These 
absolute LSWT are 25.76±0.18⁰C for the Victoria Lake 

and 26.95±0.16⁰C for the Tanganyka Lake. On the 
other hand, the colder lakes are represented by the 
Baikal Lake, 6.3±0.6⁰C, and the Superior Lake, 
6.8±0.8⁰C. 

 
Table 2. Annual trends estimated for the lakes analysed 
during the years 2003-2020 by the linear and Sen’s 
slope methods. The results’ confidence is given by the 
Mann-Kendal test (significant results are highlighted 
in bold). 

Lake 

Mean 

LSWT 

(⁰C) 

Linear 

trend 

(⁰C) 

Sen’s 

slope 

(⁰C) 

Mann-

Kendal  

(%) 

Caspian 

Sea 

16.3±0.5 0.037 0.044 87.97 

Superior 6.8±0.8 0.002 0.013 37.76 

Victoria 25.76±0.18 0.012 0.012 72.85 

Huron 9.1±0.6 0.031 0.029 69.37 

Michigan 9.9±0.8 0.025 0.029 61.64 

Tanganyika 26.95±0.16 0.015 0.017 96.93 

Baikal 6.3±0.6 0.082 0.083 99.79 

Slave 6.9±0.7 0.041 0.056 78.88 

Erie 11.7±0.5 0.043 0.058 95.53 

Ontario 10.5±0.7 0.043 0.047 65.64 

 
Sobrino et al. (2020b) established a global SST trend 
of 0.019⁰C/yr for the years 2003-2019. Assuming this 

value for the present timespan and attending to the 
Sen’s slope trends estimated in this paper, seven of the 
ten lakes analysed exceed this value: Caspian Sea 
(0.044⁰C/yr), Huron (0.029⁰C/yr), Michigan 
(0.029⁰C/yr), Baikal (0.083⁰C/yr), Slave Lake 
(0.056⁰C/yr), Erie (0.058⁰C/yr) and Ontario 
(0.047⁰C/yr). In this way, the general overview shows 
that lakes are warming at a higher rate than the global 

water surfaces. 
 

4.  CONCLUSIONS 
 

Lakes are freshwater enclosed extensions in which 
there is no exchange with open waters. For this reason, 
the initial hypothesis of this work was that they could 
suffer to a greater extent form the effect of global 

warming. Results show positive LSWT trend for the 
ten lakes considered: the Caspian Sea, Superior, 
Victoria, Huron, Michigan, Tanganyika, Baikal, Great 
Slave Lake, Erie and Ontario lakes. 
Furthermore, when considering the current SST 
warming rate, established in 0.018⁰C/yr for the whole 
sea surfaces, seven of these ten lakes exceed this trend. 

The sample size is limited enough to prevent 
generalizing that LSWT is warming at a higher rate 
than SST, but it can be affirmed that the LSWT of 
seven of the largest lakes of the world is increasing at 
an accelerated rate. The highest LSWT is found for 
Lake Baikal, with 0.083⁰C/yr, nearly five times the 
global SST trend, whereas the lowest trend is 

associated to Victoria Lake, with 0.012⁰C/yr. 
The MODIS Level 3 SST Thermal IR 8 Day 4km 
V2019.0 achieves SST retrieval by applying a specific 
SST algorithm. However, it also provides information 
about freshwater extension and this paper has 
demonstrated its functionality in this type of 
ecosystems. The validations carried out show 
correlations between 0.96 and 0.99 with results 

provided by previous literature.  
Remote sensing is a valuable technology which 
provides homogeneous and periodic data from the 
whole Earth’s surface. Its main disadvantage is the 
impossibility of collecting data below clouds. This 
weakness is overcome by the satellite temporal 
resolution that means 4 passes per day. The low 
uncertainty of results confirms its reliability, 

strengthened by the validation that has been carried out.  
The LSWT is positioned as a parameter of climatic 
interest, already recognized as an Essential Climate 
Variable by the World Meteorological Organization, 
which reflects global warming in an amplified way. As 
for other ECVs, such as SST, the LSWT must be 
continuously monitored, as it is an indicator of the 
behaviour of the surface temperature of the planet. 
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ABSTRACT- Close-range and satellite remote sensing data have been widely used to estimate vegetation 
properties (e.g., biomass, leaf area index, or chlorophyll and nitrogen contents) and characterize ecosystem 

functioning. However, the estimation of plant functional traits from spectral information in Mediterranean and 
semi-arid grasslands remains challenging. These ecosystems can be highly biodiverse, featuring numerous 
species that dynamically overlap in space and time. Such mixtures reduce the potential generalization of 
empirical models and complicate the usage of physically-based approaches. This study explores the spatio-
temporal spectral and functional variability of a drought-prone Mediterranean wooded grassland were spectral 
measurements were acquired using an ASD FieldSpec® 3 spectroradiometer (Analytical Spectral Devices Inc., 
Boulder, CO, USA) with a spectral range between 350 and 2500 nm, in a 1 ha study site over plots sampled in 23 
campaigns from 2017 to 2019. Concomitant destructive sampling provided grass functional properties (leaf area 

index, pigments, and water content). Five phenological phases (phenophases) were identified in this ecosystem: 
summer drought, autumn-winter regrowth, spring (biomass peak), and beginning of grass decay, plus an 
additional flowering phase. Spectral Angle Mapper technique classified each sampled plot into the five 
phenophases. Multiple linear regression (MLR) was used to estimate LAI from in-situ data and spectral 
vegetation indices (VIs) calculated from ASD and compare anual vs fenológical models. Results revealed a 
spatio-temporal disagreement between classification and the general phenology of the ecosystem and showed 
promising improvement in the estimation of LAI for autumn-winter regrowth and beginning of grass decay 
phenophases. 
 

1 INTRODUCTION 
 

Semi-arid grasslands can be highly biodiverse, 
featuring numerous species that overlap and change in 
space and time. Such diversity implies dynamic and 
heterogeneous vegetal mixtures featuring different 
spectral and functional properties such as green 
vegetation, senescing vegetation, litter, or flowers. 

These mixtures confound the relationships between the 
averaged spectral and functional properties of patches 
(or pixels) observable at proximal or remote ranges 
and the retrieval of vegetation properties using 
physical models (Darvishzadeh et al., 2008; Pacheco-
Labrador et al., 2021). This study explores spatio-
temporal spectral and functional variability of a 
drought-prone Mediterranean wooded grassland under 

extensive livestock use (<0.3 cows/ha) located in 

western Spain aiming to answer the following research 
questions: 

1. How many phenophases can we observe in a 
semi-arid Mediterranean grasslands? 
2. Do they have a "typical" spectral behaviour? 
3. Can pheno-spectral characterization of these 
ecosystems help to improve the estimation of plant 
traits? 

 
2 STUDY SITE AND DATASETS 

 
The study site (western Spain, 39°56′25″ N, 5°46′29″ 
W) is a typical Spanish dehesa (wooded grassland) 
with 20% tree fraction cover, 25 trees/ha density, 46 
cm mean DBH, and 150-200 years mean tree age. The 
climate is characterized by dry and hot summers with 

16.6 ºC mean annual temperature and 600mm mean 
annual precipitation. The soils are poorly drained 
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stagnic alisols over arkose with low organic matter 
contents. This ecosystem is composed of two 
vegetation strata with very different biophysical and 
phenological characteristics. The tree stratum is 
mainly composed of holm oaks (Quercux Ilex). The 
herbaceous layer covers almost the entire study area, 
except for some dirt paths and small lakes, and 

comprehends a wide variety of annual species, Tolpis 
barbata (L.) Gaertn., Chamaemelum mixtum (L.) All., 
Plantago lagopus L., Echium plantagineum L., 
Cynodon dactylon (L.) Pers., etc. (Martín, et al., 
2020). The grassland's strong seasonal and inter-
annual variabilities (Luo et al., 2020) (Fig. 1) relate to 
their  superficial roots and, thus, dependence on rain 
and shallow soil water availability.  

 

 
Figure 1. Field pictures showing the phenological 

cycle of the herbaceous layer in the study site (2017). 
 
In-situ measurements were collected in 15 field 
campaigns distributed throughout the various 
phenological phases of the ecosystem between 2017 
and 2019. These measurements include information on 
plant traits and hemispherical conical reflectance 
factors (HCRF) of the herbaceous layer. The latter 

were measured with an ASD spectroradiometer 
FieldSpec® 3 (Analytical Spectral Devices Inc., 
Boulder, CO, USA) with a spectral range between 350 
and 2500 nm and a nominal field of view of 25°. A 
total of 391 spectra plus RGB pictures were acquired 
on 1x1m quadrants. Destructive sampling in the 
central 25x25cm area of the same quadrants was 

performed by ground-level cutting of all rooted 
vegetation (green and/or dry plants). The samples were 
processed in the laboratory to estimate key variables, 
such as the leaf area index (LAI, m2 / m2) -both total 
and green fractions-, pigments, water, and dry matter 
content.  
 
3 METHODS 

 
Temporal series analysis of Normalized Difference 
Vegetation Index (NDVI) from Moderate Resolution 
Imaging Spectroradiometer (MODIS) images in 
Melendo-Vega et al. (2018), along with visual 
inspection of field pictures, allowed to define in the 
study site’s four phenological stages or phenophases 
(Fig. 2a-c): summer drought, autumn- winter 

regrowth, spring (biomass peak), and beginning of 
grass decay. A flowering phase was additionally 
defined in this study due to the spectral diversity 
induced by these mixtures (e.g., green/dry grass 
combined with white/yellow/red flowers). These 
diverse combinations leads to spectral differences that 
can be related to the state of the grass or to the flowers' 
color and density  (Fig. 2e). 

 

 
Figure 2. Phenophases identified on the herbaceous layer in the study site: a) summer drought, b) autumn-
winter regrowth, c) spring (biomass peak), d) beginning of grass decay and e) flowering phase. Hemispherical 
conical reflectance factors (HCRF) measured with a field spectroradiometer and field pictures representative of 

each phenophase are presented. 
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Twenty "pure" spectra of the different phenophases 
obtained as average values of spectra acquired in 
representative sampling plots were used as 
endmembers to classify the remaining spectra with 
Spectral Angle Mapper (SAM) hyperspectral classifier. 
SAM is a classification algorithm that calculates the 
angular distance between spectral signatures in an n-

dimensional space where n is the number of bands 
(Kruse et al., 1993). One of the main advantages of 
this method is that it is rather insensitive to 
illumination conditions since the angle between the 
vectors is independent of its length. This is relevant in 
our study as illumination conditions can vary in the 
different field campaigns due, among others, to 
seasonal changes in solar elevation.  

The SAM classification allowed to conduct an 
exploratory analysis to estimate LAI (total and green 
fractions) from in-situ data and spectral vegetation 
indices (VIs) calculated from ASD and compare anual 
vs fenológical models. Seventeen spectral vegetation 
indices (VIs) were calculated from ASD Fieldspec 3 
HCRF and multiple linear regression (MLR) models 
were generated for each phenophase (plots classified 

with SAM) and the whole study period both using all 
data and a random sample of ~25% of all sampling 

plots. Model performance was evaluated using R2 and 

standard errors of the estimates. 
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Figure 3. SAM classification of sampling plots in 5 
phenophases. Color represents each phenophase: 
yellow) summer drought, grey) autumn- winter 
regrowth, green) spring (biomass peak), brown) 
beginning of grass decay and pink) flowering phase.  
 
4 RESULTS 

 

A total of 371 spectra were classified and assigned to 
the 5 phenophases previously identified. As it can be 
observed in Fig.3, plots sampled the same day where 
assigned to different phenophases. 30% of the plots 
were assigned to the summer drought phenophase and 
between 16 and 20 % to the autumn- winter regrowth, 

spring (biomass peak) or beginning of grass decay 
phenophases. 13% of the plots were assigned to the 
flowering phenophase mainly in spring campaigns but 
with some plots also in winter.  
MLR analysis generated different models for each 
phenophase with R2 values for the total LAI models 
ranging from 0.39 for the flowering phenophase to 

0.60 for the autumn- winter regrowth; and from 0.41 
for the beginning of grass decay to 0.66 for  for the 
autumn- winter regrowth for the green-LAI models 
(Table 1). R2 values reached higer values for the 
annual models: 0.56 and 0.69 for total and green-LAI 
models respectively using the whole dataset and 0.57 
and 0.67 when only a random sample of 
approximately 25% of the dataset was used (Table 1). 

However, the standard error of the estimates where 
lower in the fenological models for three out of five 
phenophases: autumn- winter regrowth and beginning 
of grass decay, which are specially problematic for the 
estimation of plant traits using annual models due to 
the mixture of green and senesced material. 
 
Table 1. Summary of the statistics for the different 

multiple linear regression models predicting total 
(LAI) and green (green-LAI) leaf area index from a 
selection of 17 spectral vegetation indices calculated 
from ASD in-situ data. 

Phenophase n R2 Adjusted R2 Std Error of the 
estimate 

LAI Green 
LAI 

LAI Green 
LAI 

LAI Green 
LAI 

Summer drought 115 .450 
 

.582 .367 .514 .299 .205 

Autumn-winter 
regrowth 

72 .600 .663 .484 .565 .287 .255 

Spring (biomass 
peak) 

66 .457 .485 .279 .317 .499 .470 

Beginning of 
grass decay 

62 .411 .570 .202 .418 .398 .236 

Flowering 49 .397 .459 .095 .189 .506 .464 

All 364 .565 .691 .545 .676 .393 .331 

Random ~25% 82 .570 .672 .464 .588 .418 .355 

 
 

5 DISCUSSION AND CONCLUSIONS 
 

Results showed a disagreement between spectral-
based classification and the described general 
phenology of the ecosystem (NDVI time series 
analysis and visual inspection of field pictures). 
Consequently, plots sampled during the same 
campaign were often assigned to different spectral 
phenophases. This might result from the spatial 
variability of grass phenology, which can be driven by 
several factors, such as microtopography (Julitta et al., 

2013) or the influence of livestock grazing. In 
addition, the spatial variability of vegetation properties 
(functional diversity) or the mixture of different 
canopy elements could inflate grass spectral 
variability, challenging classification. However, the 
fraction of spatial trait variability unexplained by 
phenological diversity remains unclear. Previous 
works showed that accounting for phenology (using 
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simulated spectral data from radiative transfer models) 
improved the retrieval of plant functional traits since it 
reduced the variability of the relationships between 
both datasets (Martín et al., 2020).  
This study reveals that spatial variability should also 
be considered when accounting for phenology to fit 
and apply empirical or semi-empirical models to 

minimize the variability of the correlation patterns. 
Spatial variability can be especially relevant at field 
scales, from medium to high spatial resolution images, 
including those acquired from planes or drones. 
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ABSTRACT -Soil organic carbon (SOC) is the greatest carbon reservoir in terrestrial ecosystems. Encouraged 
by the good performance of hyperspectral reflectance in estimating SOC in the laboratory, the current study 
aims at estimating SOC in Spain from multispectral satellite reflectance. 113 SOC samples from the LUCAS 
database measured during the 2015 campaign were taken as reference, including bare lands, croplands, 
grasslands, shrublands, and woodlands. Sentinel-2 tiles during the 01/04/2017-31/03/2018 period with 10 % 

cloud cover or less were downloaded through Google Earth Engine. Reflectance from bands 2 (blue), 3 (green), 
4 (red), 5 (red edge), 6 (red edge), 7 (red edge), 8 (near infrared), 8A (narrow near infrared), 11 (shortwave 
infrared) and 12 (shortwave infrared) of dates coincident to all sampling locations were used as predictors. 
General and land cover dependent models were trained through Random Forests to predict SOC. Their 
performances were evaluated through leave-one-out cross-validation. Considering all land covers together, 
relative mean bias error (rMBE) of 2 % and relative root mean square error (rRMSE) of 63 % were found. Most 
important predictors were reflectance from band 11 (B11) measured on day of year (DOY) 291, B8A on 
DOY = 36, B7 on DOY = 36, B12 on DOY = 166 and B2 on DOY = 291. Results generally improved with land 
cover dependent models. Minimum rMBE (−0.9 %) and minimum rRMSE (28 %) were respectively found for 

grasslands and bare lands; whereas maxima rMBE (−4 %) were found for bare lands, shrublands and 
woodlands, and maximum rRMSE (61 %) was found for shrublands. 
 
1 INTRODUCTION 
 
Among terrestrial ecosystems, soil is the greatest 
reservoir of organic carbon. Particularly, soil organic 
carbon (SOC) is at least twice the amount of carbon 

stored in vegetation in the form of biomass at global 
scale (Batjes, 2016; Eswaran et al., 1993). Soil acts as 
a carbon sink, which helps mitigating global warming. 
However, this behaviour is already in danger due to 
degradation and deforestation (IPCC, 2014). 
Therefore, the necessity of monitoring the amount of 
carbon stored in soil has increased. 

In this context, remote sensing is a suitable tool for 

this task. Actually, the combination of hyperspectral 
measurements in the 400-2500 nm spectral range with 
machine learning methods has already achieved very 
good results when estimating SOC in Europe (Odebiri 
et al., 2021; Padarian et al., 2019; Singh & Kasana, 
2019). However, the majority of these studies used 
hyperspectral spectra measured in the laboratory. The 
estimation of SOC from multispectral sensors on 

board satellites remains yet a challenging task (Odebiri 
et al., 2021). 

The current is a preliminary study to start filling 
this gap and proposes to estimate SOC in Spain from 
Sentinel-2 multispectral reflectance using Random 
Forests. 

 

2 DATA 
 
2.1 Soil organic carbon  
 
A total of 113 SOC samples from the Land Use and 
Cover Area frame Survey (LUCAS) database 
measured during the 2015 campaign (LUCAS 2015 
Topsoil Survey) were taken as reference SOC, 

including bare lands, croplands, grasslands, 
shrublands, and woodlands (Jones et al., 2020). 
LUCAS is a panEuropean initiative that took around 
20 000 samples throughout the whole European Union 
distributed along the intersections of a 2 km × 2 km 
regular grid. Each sample consists of 5 subsamples: 
one in the location point and the other 4 at a distance 
of 2 m following the cardinal directions. SOC was 

estimated in laboratory after dry combustion 
(https://www.iso.org/standard/18782.html). The 113 

   16 

mailto:sergio.sanchez@uv.es
https://www.iso.org/standard/18782.html


samples used in the current study were selected as a 
compromise to include all 5 land covers in regions 
with similar ecoclimatic features (Región de Murcia 
and Comunitat Valenciana) and to match the same 
dates with the used satellite data (see section 2.2). 
Table 1 summarizes the basic statistics of SOC 
reference data. 

 
Table 1. Minimum (MIN), maximum (max), average 
(AVG), and standard deviation (STD), all expressed in 
g kg−1, of reference SOC by land cover (LC): bare 
lands (BRL), crop lands (CRO), grasslands (GRA), 
shrublands (SHR), and woodlands (WDL). N indicates 
the number of samples.  

LC MIN MAX AVG STD N 

BRL 5.00 18.00 12.03 3.78 12 

CRO 1.80 28.80 11.76 7.09 50 

GRA 6.30 30.90 16.46 7.10 18 

SHR 11.60 88.70 37.18 25.17 12 

WDL 17.50 104.20 47.90 25.03 21 

All 1.80 104.20 21.95 20.44 113 

 

2.2 Sentinel-2 reflectance  
 
Sentinel-2 Level-2A product was downloaded through 
Google Earth Engine (GEE) (Gorelick et al., 2017). It 
is computed running sen2cor atmospheric correction 
toolbox and called S2_SR in GEE 
(https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_S2_SR). Only 

reflectance from bands 2 (blue), 3 (green), 4 (red), 5 
(red edge), 6 (red edge), 7 (red edge), 8 (near infrared), 
8A (narrow near infrared), 11 (shortwave infrared) and 
12 (shortwave infrared) were selected from tiles with 
cloud cover equal or less than 10 % during the 
01/04/2017-31/03/2018 period. Bands with spatial 
resolution coarser than 10 m were resampled to 10 m. 
 

 
 
Figure 1. Diagram of used Sentinel-2 observations. 
VIS refers to visible, NIR to near infrared, and SWIR 
to shortwave infrared. 

 

Copernicus Sentinel-2 mission consists of two 
polar-orbiting satellites placed in the same sun-
synchronous orbit. Its revisit time is 5 days at the 

equator and 2-3 days at mid-latitudes 
(https://sentinel.esa.int/web/sentinel/missions/sentinel-
2). Thus, a total of 6 dates were available under 
maximum 10 % cloud cover for the 113 selected 
sampling points. Figure 1 schematizes the used 
Sentinel-2 observations. 
 

3 METHODOLOGY 
 
Different models to predict SOC from Sentinel-2 
reflectance were trained with Random Forests 
(Breiman, 2001). Random Forests is a decision tree 
ensemble learning method that combines bootstrap 
aggregating (Breiman, 1996) with a random selection 
of a subset of predictors in each decision. Bagging 

consists in dividing the initial training dataset in 
several subsets of the same size. Their sample units are 
chosen randomly with replacement, that is, the same 
sample unit can be selected in different subsets. Then a 
different model is trained for each training data subset 
and, finally, all models are combined to obtain 
predictions.  

In the current study, the reflectances of the 10 

selected bands in the 6 available dates (see section 2.2) 
were used as predictors (60 predictors). 500 trees, i.e. 
training data subsets were sampled with replacement. 
For each of the training subsets, a decision tree was 
grown with 4 (the square root of one third of the 60 
predictors, rounded down) randomly selected 
predictors in each node. And, since Random Forests 
was used in regression mode, all decision trees were 

combined to obtain final estimations through average. 
Due to the size of the sample (113 samples), the 

methodology was evaluated through leave-one-out 
cross-validation. It consists in fitting as many models 
as samples are available. In each iteration, one sample 
is used as test set, while the remaining samples are 
used for training. Then the performance of the models 
is evaluated as the average of the test statistics of all 
iterations. In the current study, mean bias error (MBE) 

and root mean square error (RMSE) were calculated, 
as well as their relative values (i.e. divided by the 
mean of all samples). 

This procedure was carried out both considering 
all land covers together and independently for each 
land cover. 
 
4 RESULTS  

 
4.1 All land covers 
 
When considering all land covers together, the 
following results were obtained (r indicates relative, 
see section 3): MBE = 0.53 g kg−1, rMBE = 2 %, 
RMSE = 14 g kg−1, and rRMSE = 63 %.  
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A subset of best performing predictors was also 
identified, as shown in Figure 2. In each of the 113 
iterations, predictor importance was obtained for all 
predictors used and the 5 predictors with the greatest 
predictor importance were selected, forming a reduced 
subset. Then, the 5 best performing predictors were 
identified by counting the times they appeared in the 

reduced subset. This resulted in the reflectance of band 
11 (B11) measured on day of year (DOY) 291, 
followed by B8A on DOY = 36, B7 on DOY = 36, 
B12 on DOY = 166 and B2 on DOY = 291. 

 
Figure 2. Best 5 predictors in terms of normalized 
frequency of appearance. DOY refers to day of year. 
Bands are described in section 2.2. 

 
4.2 By land cover 
 
The results of training different models for each land 

cover are summarized in Table 2. In comparison to 
training only one model for all land covers together, 
relative RMSE (rRMSE) was reduced in all land 
covers. However, relative MBE (rMBE) was reduced 
(in absolute value) only in croplands and grasslands. 
Its sign changed from positive to negative in all land 
covers but croplands, though. 
 

Table 2. Errors of predicted SOC by land cover (LC): 
bare lands (BRL), croplands (CRO), grasslands 
(GRA), shrublands (SHR), and woodlands (WDL).  
r indicates relative (see section 3).  

LC MBE 

(g kg−1) 

rMBE 

(%) 

RMSE 

(g  kg−1) 

rRMSE 

(%) 

BRL −0.50 −4.14 3 28 

CRO 0.11 0.96 6 52 

GRA −0.15 −0.88 5 33 

SHR −1.42 −3.82 23 61 

WDL −1.89 −3.94 22 45 

 
5 DISCUSSION AND CONCLUSIONS  
 
Random Forests algorithm was used to estimate soil 
organic carbon using reflectance from Sentinel-2 and 

results were validated against LUCAS database. When 

training a single model for all considered land covers 
(bare lands, crop lands, grasslands, shrublands, and 
woodlands) together, low MBE and high RMSE were 
obtained. Additionally, the reflectance measured in 
near and shortwave infrared along different periods of 
the year were identified as the best performing 
predictors. 

When training different models for each land 
cover, results generally improved. While absolute 
value of relative MBE was only reduced for croplands 
and grasslands, relative RMSE was reduced for all 
land covers, mainly for bare lands and grasslands (up 
to 35 percent points). This might be due to the sensor 
directly observing the soil in bare lands and doing so 
at least during some period of the year in grasslands. 

Shrublands and woodlands, instead, present a 
permanent cover during the whole year (at least, a 
woody one), so the models are trying to indirectly 
estimate SOC from vegetation state. Some crops 
present bare soil during some periods of time too. But, 
since no further classification was performed, the 
croplands samples might contain very different types 
of crops presenting different structures, including 

trees. 
In comparison to other studies using similar 

spectral data, the current study obtained higher errors. 
For example, Odebiri et al. (2020) obtained relative 
RMSE around 20 % over a range of algorithms 
including Random Forests. However, that study 
concerned a single and controlled land cover, i.e. a 
commercial forest plantation. Wang et al. (2022) found 

that shortwave infrared reflectance was key for 
airborne and spaceborne sensors to estimate SOC in 
bare soils, which is in agreement with the best 
performing predictors identified in the present study. 

Some alternatives that could improve the current 
results were identified from previous studies (mostly 
performed with laboratory spectra): (i) preprocessing 
of the spectral data such as the generation of 
spectrograms (Padarian et al., 2019) or the first-order 

derivative (Wang et al., 2022), (ii) using spectral 
indices as predictors instead of solely spectral 
reflectance (Odebiri et al., 2020), (iii) using more 
sophisticated algorithms to train the prediction models, 
e.g. convolutional neural networks or long short-term 
memory networks (Odebiri et al., 2021; Padarian et al., 
2019; Singh & Kasana, 2019), (iv) training different 
models for different types of soil instead of different 

land covers (Wang et al., 2022). 
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ABSTRACT - Normalized Bidirectional Adjusted Reflectance (NBAR) is a key parameter for a consistent time 
series monitoring over non-lambertian surfaces. The Sen2like is a Virtual Constellation (VC) which harmonizes 
and fuses Landsat 8 / Landsat 9 & Sentinel 2 dataset giving out a higher spatial and temporal resolution surface 
reflectance. However, for adequate monitoring of land surface is necessary the correction of sun and sensor angle 
view across the VC acquisitions. The High resolution Adjusted BRDF Algorithm (HABA) provides 10m NBAR 
product retrieved from the disaggregation of the Bidirectional Reflectance Distribution Function (BRDF) 

parameters based on the VJB disaggregation. The model was evaluated on stable sites, such as Sahara Desert and 
Amazonian Forest by comparing the impact of View Zenith Angle (VZA) and Solar Zenith Angle (SZA) of 
directional reflectance, a static NBAR model and HABA for NIR and red spectrum. Also, the Sen2Like performance 
was assessed on dynamic sites with a mosaic of land covers across the Belgium, calculating the difference per-tile 
in a 5-day window. The results of stable sites show a decline of linear dependency on the Amazon VZA from R² 
0.57 (directional) to 0.37 (HABA) in NIR and R² 0.04 (directional) to 0.0 (HABA) in red. The Sahara Desert showed 
a correction of 4% of linear dependency of SZA versus reflectance. Finally, in Belgium, HABA corrected up to 
12,74 % the directional effect on the time series. This work contributes to develop a dynamic and 

operationalization of NBAR correction method based on pixel scale for high resolution datasets. 
 
1 INTRODUCTION  

 
The Sentinel-2 (S2) mission managed by the 

European Space Agency (ESA) has been fully 
operational since June 2017 with a constellation of two 
polar orbiting satellite units. Both the Sentinel-2A 
(S2A) and Sentinel-2B (S2B) satellites are equipped 

with an optical imaging sensor, namely the Multi-
Spectral Instrument (MSI), which acquires high spatial 
resolution images with ground sampling distances 
(GSDs) of 10 to 60 m depending on the wavelength 
(Drusch et al., 2012). Currently, the understanding and 
characterization of time-varying land changes at fine 
spatial scale is becoming a real concern. The challenge 

is to maximize revisit frequency irrespective of the 
Earth location, such as over equatorial and high latitude 
regions, and thus reduce the effect of limiting factors 
such as persistent cloud coverage. The combination of 
the Sentinel-2A/2B (S2A/B) and Landsat-8/9 
(LS8/LS9) sensors together already provides a global 
median average revisit of 2.3 days (Li et al., 2020). 

These products combined can provide a Virtual 
Constellation (VC), but for retrieve an adequate 
magnitude of reflectance correction is mandatory 
performe such corrections such as the spectral band 
adjustment factor (SBAF) (Teillet et al., 2007) and 
correcting the noise of the data due to the Bi-Directional 
Reflectance Function (BRDF) angular dependency. 
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 Regarding the BRDF correction, Landsat and 
Sentinel-2 sampling characteristics provide nearly 
constant observation geometry and low illumination 
variation within each scene. However, when a surface 
reflectance time series combining measurements from 
both sensors is created, variations due to differences in 
view geometry between them arise. In extreme cases, 

the differences in the view zenith angle for a ground 
target can reach 20° from adjacent orbits only a few 
days apart. Additionally, variations in the seasonal 
illumination also impact the surface reflectance value. 
Gao et al (2014) concluded that for Landsat-like narrow 
swath sensors, the major BRDF effect arises from the 
day of year effect, and can cause variations of 0.04–0.06 
reflectance compared to mid-summer observations. 

Such angular effects can be corrected using a 
Bidirectional Reflectance Distribution Function 
(BRDF) model. However, the narrow angular sampling 
of moderate resolution sensors such as Landsat and 
Sentinel 2 complicates the BRDF parameters retrieval. 
In this paper, we describe the adaptation of the method 
of Franch et al. (2014, 2018) called High resolution 
Adjusted BRDF Algorithm (HABA) for HLS BRDF 

normalization and applied to testing on test sites.  
The application of BRDF normalization algorithms 

such as HABA or C-Factor (Roy et al., 2016) is 
mandatory evaluate the performance of the correction 
of angular dependency. For this reason, the aim of this 
work is to validate the BRDF correction of HABA and 
C-Factor algorithms compared to the bidirectional 
reflectance over time series in different stable and 

unstable sites around the world. 
 

2. MATERIAL AND METHODS 
 
For evaluate the Sen2Like series, we used 2019 dataset 
for evaluate two different methods for BRDF 
corrections were implemented based on the literature 
survey. This evaluation was performed on two stable 
sites such as Amazon Forest and Sahara Desert, and 

also a mosaic of different land covers over Belgium area 
(Figure 1). The HABA is the only algorithm that 
estimates the BRDF parameters at S2 spatial resolution 
including a disaggregation of the BRDF parameters 
estimated from the MODIS surface reflectance product 
(M{O, Y}D09) at 0.01° spatial resolution and using the 
Vermote Justice Bréon (VJB) method (Vermote et al., 
2008). A global method based on a static set of 

coefficients issued in Roy et al. (2016, 2017) and a 
scene dependent set based on BRDF dynamic 
characterization (Franch et al., 2014). The two methods 
were selected to fulfill the accuracy requirements of 
users. The first approach proposed by Roy et al. (2016, 
2017) is widely adopted in the community to correct 
S2/LS8 data (observations performed close to nadir) 
due to its simplicity and relatively good performance 

depending on the land cover. The results are in general 
more accurate with the HABA, which provides HR 
characterization, and the correction is performed at the 
S2 pixel level. However, the HABA implementation is 
more complex and requires more processing resources. 

A) 

 
B) 

 
C) 

 
Figure 1. Study Area. A) Amazon, B) Sahara Desert  
C) Belgium 
 
As shown in Figure 2, the two methods were 

implemented within the same configurable processing. 
Regarding the normalization step specifically, there are 
two major differences between the two methods. On 
one hand, Roy et al. (2016) provides a single set of 
coefficients called C-factor. On the other hand, the 
HABA provides per pixel values, estimated by using the 
NDVI parameter as proxy value. Furthermore, HABA 
requires as input a MGRS tile-dependent BRDF 

characterization. The BRDF calibration for those 
parameters is shown in the Equation (1). In order to 
evaluate the performance, we studied the impact of the 
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solar zenith angle (SZA) variation through the year over 
two homogeneous sites and d the impact of the view 
zenith angle (VZA) variation. For Belgium we analysed 
the impact of the swath overpass over all tiles using a 
5-day time window and determining the absolute 
difference between different VZA over the study area.  

 
 

 
Figure 2. S2L BRDF correction workflow. Figure 2A) 
shows the correction on S2L parameter, and 2B) 
represent the disaggregation parameter in the BRDF 
parametrization for HABA method 
 
In summary we performed two tests: 

Test 1: Evaluation normalized and directional 
reflectance against the corresponding solar and view 
geometry (SZA & VZA) over two stable sites 20MRB 
(Amazon Forest) 34RGS (Libya Desert). 
Test 2: Evaluate Absolute difference of adjacent 
Sentinel-2 orbits within a 5-day time window vs VZA 
variation over multiple tiles in Belgium through 2019. 
 

2.1 Software used 
 
The software used in this algorithm was Python version 
3.6 based on the Sen2Like environment available in 
Github (https://github.com/senbox-org/sen2like). 

 
2.2 Equations  
 
𝑅𝑁(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡, 0,0, Δ) = 𝑅(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡, 𝜐, 𝜙, Δ)

∗

1 + 𝑉(Δ)𝐾𝑣𝑜𝑙𝑅
𝑁(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡, 0,0)

+𝑅(Δ)𝐾𝑔𝑒𝑜(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡 , 0,0)

1 + 𝑉(Δ)𝐾𝑣𝑜𝑙(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡, 𝜐, 𝜙) +

𝑅(Δ)𝐾𝑔𝑒𝑜(𝜃𝑚𝑒𝑎𝑛,𝑙𝑎𝑡, 𝜐, 𝜙)

 

(1) 

Where: Kvol, Kgeo (Li et al., 1986, Maignan et al., 2004, 
Schaaf et al., 2002) are derived based on the pixel-based 
solar and view angles, 
V and R are the volume and the roughness parameters 
that describe the BRDF shape, 
The θ,υ,ϕ parameters are the solar/viewing, zenith and 
the relative azimuth, 

The Δ parameter is related to the spectral band taken 
into consideration for this calculation. 
 
3. RESULTS 
 

BRDF-normalized using C-Factor, HABA and 
directional reflectance versus solar zenith angle for 
each day of the year (DOY) considered in the time 

series (2019). Results are shown for (a) the red band, 
(b) the near infrared (NIR) band, (c), and (d) the SZA 
for each observation (Figure 3) over a stable surface 
(evergreen forest) from Amazon Forest, where the 
linear dependency from NIR is reduced from R2 0.43 
(C-Factor) to 0.37 (HABA). 
The figure 4 shows the directional (red), BRDF-
normalized using C-Factor, HABA and surface 

reflectance versus the SZA in the Sahara. The SZA of 
this site shows a greater variation during the year (from 
10 to 60 degrees) compared to the previous site (from 
20 to 45 degrees). Despite this, the directional 
reflectance barely shows any dependency with the 
SZA. However, the C-Factor BRDF-normalized data 
shows a high dependency with higher values for high 
SZA and lower values for low SZA (increased R2 from 

directional red 0.08 to 0.42 and NIR 0.08 to 0.21). This 
is not the case when applies HABA, that shows more 
stable surface reflectance values (red R2 0.06 and NIR 
0.04). 
Regarding the BRDF processing, comparisons between 
different observations from adjacent swath overpasses 
to cover different observation geometries and 
illumination conditions over Belgium during 2019 were 
carried out (Figure 5). Figure 11 shows the absolute 

differences for bands B02, B03, B04, B8A, B11 and 
B12 regarding the directional reflectance (DIR) without 
BRDF correction, the C-factor correction (Roy et al., 
2016) and the HABA correction applied for different 
view zenith angles (VZAs). The results were obtained 
from the comparison of 964 million cloud-free pixels 
for each date. The number of overlapping pixels varies 
between 9% and 36% for VZAs from 0° to 2° 

depending on the swath for each MGRS tile and the 
acquisition date. For VZAs between 2° to 4°, the 
percentage of overlapping data represented between 
28% and 45% of the tiles. Additionally, for VZAs 
between 4° and 6°, the number of analyzed pixels 
represented between 13% and 25%. Finally, for the 
largest VZA observations (>6°), the analyzed pixels 
represent between 12% and 42%. 
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A) 

 
B) 

 
C) 

 
D) 

 
Figure 3. SZA and VZA evaluation over amazon forest 
 
 

A) 

 
B) 

 
C) 

 
D) 

 
Figure 4. SZA and VZA evaluation over Sahara Desert. 
Table 4 summarizes the metrics obtained from the 
analysis, demonstrating that the HABA correction 
decreases the absolute difference up to 13% (in the 

SWIR bands) compared to the directional product. 
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Figure 5. VZA evaluation over Belgium based on 
different threshold on 5-day window. 

 
Band Method Mean Std % Corr 
B02  DIR 0.01297 0.01174  
C-FACTOR 0.01482 0.01402 14.24% 
HABA 0.01213 0.01139 −6.45% 
B03  DIR 0.01179 0.01207  
C-FACTOR 0.01397 0.01460 18.56% 
HABA 0.01062 0.01185 −9.90% 

B04  DIR 0.01144 0.01318  
C-FACTOR 0.01357 0.01552 18.58% 
HABA 0.01051 0.01279 −8.19% 
B8A  DIR 0.01994 0.02038  
C-FACTOR 0.02431 0.02213 21.96% 
HABA 0.01742 0.02002 −12.60% 
B11  DIR 0.01424 0.01842  
C-FACTOR 0.01753 0.02012 23.03% 
HABA 0.01243 0.01791 −12.74% 

B12  DIR 0.02621 0.01686  
C-FACTOR 0.03134 0.01851 19.58% 
HABA 0.02442 0.01614 −6.82% 

Table 1. Summary of difference of S2L bands over 
Belgium MGRS tiles, considering a window of 1 to 5 
days. Columns shown are the mean, standard deviation 
and correction percentage of NBAR algorithms. 
Positive and negative values represent increase and 

decrease of errors, respectively. 
 

The separation of intervals of absolute difference in the 
boxplot (Figure 11) shows that the metrics in the visible 
spectrum (B02, B03, B04) yielded the lowest errors 
with a median under 0.01 and a low variability for all 
methods and the observation geometries. Besides, the 
impact of the BRDF correction in B8A, B11 and B12 

depends on the observation geometry (VZA) and on the 
BRDF correction method. For VZA lower than 4°, the 
directional reflectance shows the lowest errors, while 
C-Factor and HABA show errors up 0.01. For VZA 

over 6°, the C-Factor stills shows an overestimation in 
B8A reflectances, and HABA stabilizes the average 
value but still exhibits a higher variability than the 
directional reflectance. In the case of the SWIR bands 
(B11 and B12), the C-Factor and the HABA perform a 
better correction for the larger VZA acquisitions. The 
comparison shows that the HABA produced the lowest 

differences across all bands, while the C-factor 
correction showed larger discrepancies than the 
directional product for all VZA pixels aggregated.  
 
4. CONCLUSION 
 
When applying the HABA method, the results show a 
decrease in the surface reflectance timeseries a decrease 

of the correlation coefficient with the SZA for the forest 
site, and little to no dependency on the desert site. In 
contrast, the C-Factor S2L BRDF normalization 
algorithm under-corrects the BRDF effects on the 
forests site, and increases the linear correlation on the 
desert site. In amazon forest is known that reflectance 
variation is mainly drived by directional effects on 
surface reflectance can be larger than the differences in 

reflectance along the year, and HABA performs well the 
correction over stable sites. In a mosaic crop area where 
exists unstable surfaces such as crop or deciduous forest 
areas mixed with stable surfaces (cities, evergreen 
forest and tree crops), all models performed a good 
performance, however C-factor tends to overcorrect on 
all bands. In future work, we can add this parameter and 
improve the quality assessment, evaluating the noise of 

time series with satellite azimuth data over areas in 
order to provide a new evaluation of linear 
dependencies on time series. 
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ABSTRACT - The EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF) aims to be a 
Leading Centre for retrieval of information on Land Surfaces from Remote Sensing data. All LSA SAF products 
have been classified as essential and are distributed free of charge from the LSA SAF web page  
(https://landsaf.ipma.pt/en). Currently the LSA-SAF generates two operational lines of LSA SAF vegetation 
products.  Unlike the approach to produce SEVIRI/MSG, which relies on stochastic spectral mixture and statistic 
methods, the EPS algorithm relies on a hybrid approach that blends the generalization capabilities offered by 
physical radiative transfer models with the accuracy and computational efficiency of machine learning methods.  
This works assesses the consistency among the two suites of LSA-SAF vegetation products and proposes methods 

to improve their consistency. Results demonstrate that these differences can be reduced through the adaptation of 
the EPS algorithm on SEVIRI/MSG data. This work will contribute to enhance the consistency among derived 
vegetation parameters, which is a priority task previous to the adaptation of the current algorithms to the new 
processing chains of future EUMETSAT sensors. 
 
1 INTRODUCTION  

 
The EUMETSAT Satellite Application Facility 

on Land Surface Analysis (LSA-SAF) aims to be a 
Leading Centre for retrieval of information on Land 
Surfaces from Remote Sensing data, with emphasis on 
EUMETSAT Satellites. The LSA-SAF provides near-
real-time and offline products and user support for a 
wide range of land surface variables. All LSA SAF 
products are distributed according with EUMETSAT 
data policy and have been classified as essential and 

are distributed free of charge from the LSA SAF web 
page  (https://landsaf.ipma.pt/en). Currently the LSA-
SAF generates two operational lines of LSA SAF 
vegetation products. 

 
1.1 The SEVIRI/MSG products  

 
Firstly, a suite of product (FVC, LAI, FAPAR, 

GPP) derived from the geostationary SEVIRI 

(Spinning Enhanced Visible and Infrared Imager) on 
board MSG (Meteosat Second Generation) 1-4 
(Meteosat 8-11) (see examples in figure 1). García-
Haro et al. (2019) describes the algorithms and 
provide technical details about the products, including 
potential applications.  

 
Figure 1. Examples of NRT and CDR MSG vegetation 
products along with their respective identifiers. 
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These products are generated and disseminated in 
Near-Real-Time (NRT) with a time lag of about six 
hours at two resolutions (daily and 10-day) over the 
geostationary Meteosat disk, covering Europe, Africa, 
the Middle East and parts of South America.  The 
algorithms were reprocessed to generate the full 
archive of Climate Data Records (CDRs) for 10-days 

vegetation since 2004 onwards. 

 
Figure 2. AVHRR/Metop FVC (top), LAI (middle) and 
FAPAR (bottom) LSA SAF product corresponding to 
the 15th of June 2016. 

 

1.2 The AVHRR/Metop products  
 
Secondly, a suite of global FVC, LAI and FAPAR 

vegetation products based on data from the AVHRR 
sensor on board MetOp-A, B and C satellites forming 
the EUMETSAT Polar System (EPS) is also 
disseminated. Unlike the approach to produce 
SEVIRI/MSG, which relies on stochastic spectral 

mixture and statistic methods, the EPS algorithm relies 
on a hybrid approach that blends the generalization 
capabilities offered by physical radiative transfer 
models with the accuracy and computational 
efficiency of machine learning methods. The 10-day 
vegetation products are level 3 full globe rectified 
images in sinusoidal projection, with a resolution of 

1.1 km x 1.1 km and.  The algorithms and practical 
information about the products characteristics are 
provided in García-Haro et al. (2018). The LSA-SAF 
plans to release a CDR of FVC, LAI, FAPAR EPS 
products (2007-present) that correspond to a back-
processing of existing for NRT/operational products 
using the most recent algorithm version. 

The LSA-SAF vegetation products are routinely 
validated through comparison with in situ 
measurements inter-comparison with other satellite 
derived vegetation products. The validation studies 
have revealed overall statistical good results compared 
with reference products (e.g. PROBA-V and MODIS) 
over a network of sites (García-Haro et al. 2018; 
Campos-Taberner et al. 2018). 

The families of SEIVIRI/MSG and 
AVHRR/Metop LSA SAF vegetation products are 
disseminated as a separate file coded in HDF5 format 
signed 16-bit integer variable, and include additional 
datasets and metadata attributes. Additional datasets 
include an estimate of the uncertainty assigned at each 
pixel and quality flag information to identify 
unreliable observations.  

 
2 COMPARISON BETWEEN THE FAMILIES OF 

LSA SAF PRODUCTS 
 

This works assesses the consistency among the 
two suites of LSA-SAF vegetation products and 
proposes methods to improve their consistency. A 
representative example of these differences is depicted 

in figure 3.  

 
Figure 3. Difference maps and scatterplots between 
the actual MSG and EPS products corresponding to 
June 2018. To enable the comparison, EPS products 
were reprojected to the MSG grid.  

 
While differences are not very considerable for 

FVC and LAI, both FAPAR products are significantly 
biased in forest regions showing MSG a clear negative 
bias regarding EPS.  Although inputs of MSG and EPS 
algorithms are similar (i.e. atmospherically corrected 
cloud-cleared k0 BRDF product at three channels: red, 
NIR, MIR), discrepancies exist due to various spatial 
and temporal resolutions, processing lines and 
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differences in the algorithms used to retrieve both the 
BRDF parameters and the vegetation products. For 
example, the approach to retrieve SEVIRI/MSG 
vegetation products relies on stochastic spectral 
mixture and statistic methods. The FAPAR product 
presents a lower quality because it uses as input the 
three BRDF parameters (k0, k1, k2), with k2 presenting 

large uncertainties and noisy profiles on a short time 
scale, mainly in Western Africa.  Conversely, the EPS 
algorithm jointly retrieves the suite of vegetation 
parameters using a hybrid approach that blends the 
generalization capabilities offered by physical 
radiative transfer models with the accuracy and 
computational efficiency of machine learning 
methods. 

 
3 IMPROVING THE CONSISTENCY BETWEEN 

LSA SAF PRODUCTS 
 
We propose a method to improve the 

consistency, which consists in the adaptation of the 
EPS algorithm on SEVIRI/MSG data. A synthetic 
database was thus generated using PROSAIL, 

considering diversity of vegetation types and soil 
background that can be found the MSG disk and 
taking into account the spectral wavebands of SEVIRI 
sensor. The MSG-like observations derived using this 
prototype were then compared with the actual 
observations of EPS (figure 4) and MSG (figure 5). 

This comparison exercise shows an improved in 
the consistency regarding the LSA SAF. It should be 

clarified that the main source of differences between 
the new MSG prototype versus actual MSG values 
(figure 5) is that both products rely on different 
retrieval algorithms, whereas the differences versus 
EPS values (figure 4) are mainly due to the differences 
in the input, i.e. differences in the EPS and MSG 
BRDF algorithms (Geiger et al. 2016). This explains 
the considerable improvement in the consistency 
between LSA SAF FAPAR products in figure 4. 

 
Figure 4. Difference maps and scatterplots between 

the EPS products and MSG prototyped using the EPS 
algorithm. Results correspond to June 2018. To enable 
the comparison, EPS products were reprojected to the 
MSG grid.  

 
Figure 5. Difference maps and scatterplots between 
the actual MSG products and MSG prototyped using 
the EPS algorithm. Results correspond to June 2018.  
 
4. CONCLUDING REMARKS 
 

Currently the LSA-SAF generates two 

operational lines of LSA SAF NRT vegetation 
products. The algorithms were reprocessed to generate 
the full archive of Climate Data Records for 10-days 
vegetation products, offering nineteen years of 
homogeneous time series required for climate and 
environmental applications. The high frequency and 
good temporal continuity of SEVIRI products 
addresses the needs of near-real-time users and are 

also suitable for long-term monitoring of land surface 
variables. By its part, the EPS products provide global 
coverage and a good spatial completeness and 
temporal continuity in the tropical, subtropical and 
warm temperate regions, addressing deficiencies in 
current operational products over cloudy areas.  

LSA-SAF has also developed recently two new 
products, SEVIRI/MSG GPP (Martínez et al. 2018; 
2020) and AVHRR/Metop CWC (García-Haro et al. 

2020). The future generation of new LSA-SAF 
products derived from the future Meteosat Third 
Generation (MTG) and EPS second generation (EPS-
SG) satellites, with higher spatial and spectral 
resolution, will guarantee the continuity of the service. 

This work has addressed the existing 
differences between the LSA SAF vegetation products 
derived from geostationary SEVIRI/MSG and polar 

orbit AVHRR/Metop LSA SAF vegetation products, 
which mainly affect FAPAR product, mainly due to 
inconsistencies in the retrieval algorithms. Results 
demonstrate that the adaptation of the EPS algorithm 
on MSG can reduce such differences. The proposed 
method will contribute to enhance the consistency 
among derived vegetation parameters, which is a 
priority task previous to the adaptation of the current 

algorithms to the new processing chains of future 
EUMETSAT sensors (FCI/MTG, VII/EPS-SG, and 
3MI/EPS-SG) to ensure service continuity.  
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ABSTRACT- The increasing number of EC towers distributed along the planet fosters the application of 
statistical regression approaches (machine learning) for carbon fluxes estimation. The Satellite Application 
Facility for Land Surface Analysis (LSA SAF) aims to take full advantage of EUMETSAT remotely sensed data to 

measure land surface variables. Among others, LSA-SAF provides products of downward radiation fluxes, land 
surface vegetation parameters, surface temperature, and evapotranspiration from observations acquired by the 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board the Meteosat Second Generation (MSG). 
This work aims at assessing the feasibility of estimating CO2 fluxes such as the gross primary production (GPP), 
net ecosystem exchange (NEE), and ecosystem respiration (RESP) blending SEVIRI/MSG and EC data by means 
of machine learning methods. An ensemble of SEVIRI/MSG products were used as inputs for the model: Fraction 
of Vegetation Cover (FVC), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation 
(FAPAR), Downward Surface Shortwave Flux (DIDSSF), Evapotranspiration (DMET), Reference 

evapotranspiration (METREF), Land Surface Temperature (MLST), and the BRDF k0 parameter in the RED, 
NIR, and MIR SEVIRI/MSG bands. In addition, CO2 fluxes from seven European EC towers were selected for 
pairing in situ data with the SEVIRI/MSG observations during the 2015-2019 period. Several machine learning 
regression methods were used for comparison including tree models (decision, bagging, boosting, and random 
forests), neural networks, and kernel methods (support vector regression, kernel ridge regression, and Gaussian 
process regression). The results show that the machine learning methods provide accurate and consistent 
estimates among them. The best performance is found in the case of random forests, in which correlations with 
GPP, NEE, and RESP reached 0.85, 0.61, and 0.89, respectively. These results encourage the use of data-driven 

approaches jointly with remote sensing data for carbon fluxes estimation. 
 
 
1  INTRODUCTION  

 
The characterization of carbon exchanges 

between biosphere and atmosphere requires detailed 
information on both spatial and temporal behaviours 
of CO2 fluxes. The assessment of these carbon fluxes 

is key to enhance our knowledge regarding the Earth’s 
climate system modelling and understanding. Ground 
observations can be acquired by eddy-covariance (EC) 
towers, which are able to estimate CO2 net exchanges 
at very high temporal resolutions. EC measure the net 
ecosystem exchange (NEE), that is the net balance 
between two gross CO2 fluxes: the gross primary 
production (GPP), which accounts for the CO2 uptake 

from atmosphere by photosynthesis, and the CO2 
released in the atmosphere by ecosystem respiration 
(RESP). EC data are available around the planet in 
multiple regional networks and initiatives such as the 
Integrated Carbon Observation System (ICOS) 
(https://www.icos-cp.eu/), the National Ecological 

Observatory Network (NEON) (Keller, 2008), 
AmeriFlux (Novick et al., 2018), and Fluxnet 
(Pastorello et al., 2020). 

Upscaling EC measurements from tower 
footprint to regional and global scales to better 
understand their spatial temporal dynamics. This can 

be achieved by combining EC data and remote sensing 
variables (Jung et al., 2020) using machine learning 
(ML) approaches. Statistical ML regression algorithms 
are able to generate adaptive and robust relationships 
among the predictors (remote sensing observations) 
and the response variables (GPP, NEE, and RESP). 
These algorithms can cope with the nonlinearity of the 
functional dependence between the CO2 fluxes and 

some of the remote sensing signals. They are suitable 
for operational applications since are very fast to apply 
after the training (Campos-Taberner et al, 2016). There 
is a wide variety of machine learning models for 
regression and function approximation. Among them 
the most widely used belong to the families of tree 
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models, neural networks (shallow and deep learning), 
and kernel methods. Deep learning approaches usually 
outperform shallow ML; however, the understanding 
of these techniques is limited (Campos-Taberner et al., 
2020). 

This work aims at assessing the feasibility of 
estimating CO2 fluxes (GPP, NEE, and RESP) by 

means of ML approaches using SEVIRI/MSG and EC 
data in the framework of the Satellite Application 
Facility on Land Surface Analysis (LSA SAF) (García-
Haro et al., 2021). 

 
2  MATERIALS 
 
2.1 Eddy-covariance data and sites 

 
In this work, we used daily data from seven 

ICOS EC towers located within the extension of the 
MSG/SEVIRI disk during the 2015-2019 period. Table 
1 summarizes the main characteristics of the EC sites 
used in this study. 
 
Table 1. EC sites. 

Name Code Lat /long Biome 

Majadas del 
Tietar (South) 

ES-LM2 39.93 / -5.77 SAV 

Klingenberg DE-Kli 50.89 / 13.52 CRO 
Grillenburg DE-Gri 50.95 / 13.51 GRA 
Tharandt DE-Tha 50.96 / 13.56 ENF 
Gebesee DE-Geb 51.09 / 10.91 CRO 

Hyytiala FI-Hyy 61.84 / 24.29 ENF 
Monte 
Bondone 

IT-MBo 46.01 / 11.04 GRA 

  
2.2 Remote sensing data  

A set of daily SEVIRI/MSG products were used 
as inputs for the regression algorithms: Fraction of 
Vegetation Cover (MDFVC), Leaf Area Index 

(MDLAI), Fraction of Absorbed Photosynthetically 
Active Radiation (MDfAPAR) (García-Haro et al., 
2019), Downward Surface Shortwave Flux (DIDSSF) 
(LSA SAF, 2012), Evapotranspiration (DMET) and 
Reference evapotranspiration (METREF) (LSA SAF 
Team. 2016), Land Surface Temperature (MLST) 
(Trigo et al., 2009). In addition, an internal LSA SAF 
products were also used as predictors: the k0 parameter 
of the bidirectional reflectance distribution function 

(BRDF) in the RED, NIR, and MIR SEVIRI/MSG 
bands, respectively. 

 
3  RETRIEVAL METHODOLOGY 
 

For both in situ and remote sensing data only 
best quality data were used according with their 
quality flag. Several regression algorithms were built 

using the data set composed by the EC data and the 

corresponding SEVIRI/MSG products (70% for 
training and 30% for validation). For instance, both 
single and ensembles of models based on decision 
trees were used. For the ensembles, different 
techniques such as bagging, boosting, and random 
forest (Belgiu and Drăguţ, 2016) were used. In 
addition, neural networks, and kernel methods 

(Johnson et al., 2020) including support vector 
regression (SVR), kernel ridge regression (KRR), and 
Gaussian process regression (GPR) were also tested. 

 
4 RESULTS  
 

Time series of GPP, NEE, and RESP retrievals 
were obtained using independently all the algorithms. 

The time series correspond to the pixel where every 
EC tower is located in the MSG disk. The mean error 
(ME), root mean squared error (RMSE), mean 
absolute error (MAE), and the Pearson’s coefficient of 
correlation (R) were computed for every case over the 
test set to assess the accuracy of the retrievals. Tables 
2, 3 and 4 shows the accuracy metrics for every 
regression algorithm and estimated flux. 

 
Table 2. Accuracy metrics for GPP. 

Algorithm ME RMSE MAE R 

RF 0.02 1.89 1.12 0.85 

GPR 0.02 1.91 1.12 0.83 

KRR 0.03 1.92 1.19 0.82 

Boosting 0.03 1.99 1.20 0.80 

Bagging 0.03 1.98 1.19 0.80 

NN 0.05 2.05 1.29 0.75 

Tree 0.05 2.25 1.28 0.74 

 
Table 3. Accuracy metrics for NEE. 

Algorithm ME RMSE MAE R 

RF 0.03 1.37 0.76 0.61 

GPR 0.03 1.37 0.77 0.60 

KRR 0.03 1.39 0.77 0.61 

Boosting 0.05 1.44 0.78 0.58 

Bagging 0.05 1.45 0.78 0.55 

NN 0.06 1.50 0.80 0.50 

Tree 0.09 1.75 0.98 0.45 

 
Table 4. Accuracy metrics for RESP. 

Algorithm ME RMSE MAE R 

RF 0.03 1.19 0.71 0.89 

GPR 0.04 1.21 0.71 0.88 

KRR 0.04 1.21 0.72 0.87 

Boosting 0.05 1.23 0.75 0.81 

Bagging 0.05 1.22 0.75 0.81 

NN 0.05 1.35 0.77 0.75 

Tree 0.07 1.40 0.81 0.69 
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RF outperformed the rest of the methods in all 
cases and metrics as shown in tables 1, 2 and 3. 
Figures 1, 2, and 3 show the scatter plots of the 
predicted fluxes with the RF over the validation set 
never used during the training. 

 
 

 

 
Figure 1. Scatter plot and accuracy metrics of 
estimated SEVIRI/MSG GPP values versus EC GPP. 

 
 
 
 

 
Figure 2. Scatter plot and accuracy metrics of 
estimated SEVIRI/MSG NEE values versus EC NEE. 

 

 
Figure 3. Scatter plot and accuracy metrics of 
estimated SEVIRI/MSG RESP values versus EC RESP. 

 
In addition, RF provides the relevance of every 

predictor in the training (see figure 4). The DIDSSF is 
identified as the most relevant predictor, whereas de 
BRDF k0 parameter of the MIR band is the least 
relevant. 
 
 

 
Figure 4. Relevance of the predictors (normalized to 
the maximum) as provided by the RF. 
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ABSTRACT Doñana National Park is located in the southwest of the Iberian Peninsula, with high heterogeneity 
ecosystems and where water scarcity is recurrent. In this study, we performed a first evaluation of the modeling 

of surface energy fluxes as well as carbon assimilation (GPP) with flux tower data. Surface energy fluxes were 

estimated through a two-source energy balance model (TSEB) while GPP was done through a LUE model. Both 
models used Terra/Aqua MODIS images during the period 2014-2015 in an experimental plot of Juniper 

woodlands (Juniperus phoenicea) in the Doñana Biological Reserve. TSEB yielded acceptable results, in the case 
of net radiation, latent heat, sensible heat and soil heat fluxes showing an average RMSE of 54, 47, 63 and 6 W·m-

2, respectively. The LUE-model is based on the relationship between absorbed photosynthetically active radiation 
and its use by the plant defining a maximum value per species or plant functional types which is reduced by 

environmental conditions. We evaluated the LUE-model in two ways to reduce such maximum efficiency value: 1) 

by forcing it with meteorological variables; 2) by forcing it with both meteorological variables and a water stress 
index from TSEB evapotranspiration retrievals. Our assessment with flux data showed that although the 

application of the LUE with meteorological data had an acceptable error (~0.9 gC/m2), the use of the water stress 

index improved the results (0.7 gC/m2) due to a better fit in situations of scarcity of water. 

 
1 INTRODUCTION  

Monitoring of surface energy fluxes (net radiation, 

latent heat, sensible heat and soil heat fluxes) and CO2 
fluxes has important implications for global and 

regional climate modeling and the understanding of 

hydrological cycles, as well as for advising on 
environmental stress affecting agricultural and forest 

ecosystems. Remote sensing provides useful 
radiometric measurements to estimate these fluxes and 

to apply them in large areas in an economically viable 

way. Currently, a large part of the algorithms developed 
for the determination of energy and CO2 fluxes have 

been developed and validated in crop areas (e.g. Padilla 
et al., 2012, Knipper et al., 2020), and their 

implementation in natural vegetation represents a major 

challenge for monitoring these variables and in 
improving the knowledge on water resources. This is 

particularly relevant in Mediterranean ecosystems due 
to its complexity including various layers of vegetation, 

low coverage and a great diversity of species. With this 

objective, the Singular Scientific and Technological 
Infrastructure of the Doñana Biological Reserve (ICTS-

Doñana), has set up flux towers (Eddy Covariance 
systems, EC) to monitor the ecosystem functioning in 4 

different ecosystems of the Doñana Natural Area (black 
juniper, shrubs wet and dry areas and marsh). Flux 

towers are an effective tool to quantify and validate 

surface energy and carbon fluxes in natural land covers 
(Cristóbal et al., 2020). 

This paper presents the first results and the 
assessment of the surface energy fluxes and CO2 

assimilation (gross primary production, GPP) models 

for the years 2014 and 2015 in a Juniper woodlands 
located at the Doñana Biological Reserve (RBD) using 

remote sensing MODIS products and flux towers. 

2  METHODOLOGY  

2.1 Study site and validation data 

The flux tower, located at the RBD (lat: 36.99º, long: -

6.51º) in the province of Huelva (Fig. 1), is a Juniper 
woodlands, with a vegetation cover of 50%, dominated 

by the black juniper (Juniperus phoenicea ssp. 

turbinata) and punctually accompanied by stone pine 

(Pinus pinea) and other Mediterranean shrub species. 

The main instruments of the EC tower are installed 
at 7.5 m a.g.l (4 m above the juniper cover) and consist 

of all the necessary sensors to continuously measure the 

surface energy fluxes such as net radiation (Rn), 
sensible heat (H), latent heat (LE), and soil heat fluxes 

(G) as well as carbon fluxes (NEE). The main sensors 
installed are a four-component radiometer, relative 

humidity and air temperature sensors, a 3D sonic 

anemometer, a water vapor and carbon dioxide open 
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path sensor, and soil moisture, temperature, and heat 

flux sensors. In addition, there are two radiometric 

temperature sensors on a juniper canopy and a bare soil 
(sandy soil). 

 

Figure 1. Location of the Juniper EC tower in the 
Doñana Biological Reserve. 

2.2 Surface energy fluxes modeling with TSEB. 

To estimate surface energy fluxes a Two-Source 

Energy Balance Model (TSEB) (Norman et al., 1995) 
was applied. This model is based on the partition of the 

radiometric temperature of the surface (Trad) in two 

components, soil (Ts) and the canopy (Tc) 
temperatures, through the fraction of vegetation cover 

observed by the thermal sensor given its angle of 

observation, f(Ɵ) (Eq. 1): 

     (1) 

With this information, TSEB evaluates the energy 

balance of the soil and the canopy separately, 

calculating the total energy fluxes and components, 

fulfilling the energy balance equation (Eq 2-6): 

   (2) 

   (3) 

  (4) 

   (5) 

   (6) 

where Rn is the net radiation, H the sensible heat, 

LE the latent heat and G the soil heat flux. The subscript 

c identifies the canopy fluxes and s the soil fluxes. All 

fluxes are measured in W·m-2. 

Canopy and soil heat fluxes are evaluated by means 
of a temperature gradient through a series resistance 

model where Tc, Ts and T0 (estimated aerodynamic 

temperature of the cover) are obtained. The extinction 
of Rn within the canopy (Rnc) is approximated from the 

Leaf Area Index (LAI), while G is set as a fraction 

(0.14) of the Rns. Through a modification of the 

Priestley-Taylor formulation (Priestley and Taylor, 
1972), in which the estimation of the greenness fraction 

(fg) is necessary, an initial estimate of the canopy 
transpiration (LEc) is calculated, the which is iteratively 

reduced if signs of plant stress are detected in the soil-
surface thermal component. Finally, the soil 

evaporation rate (LEs) is calculated as a residual of the 

energy balance (Anderson et al., 2007). 

This model was firstly applied at a local scale in 

order to calibrate it with EC data and later with remote 
sensing data for application at a regional scale. As input 

data for model calibration, we used meteorological data 

from the EC tower and the Trad derived from the 
MODIS LST product on board Terra and Aqua 

(MOD011/MYD011) at 1000 spatial resolution with a 
total of 96 and 109 images for 2014 and 2015. In the 

case of LAI, the MODIS product (MOD15A2) at 500 

m spatial resolution was used, and for fg the NDVI and 
EVI indices at 500 m spatial resolution, derived from 

the surface reflectance products of MODIS (MOD09) 
according to Guzinski et al. (2013) and Cristóbal et al. 

(2020). Model assessment was carried out using EC 

data. Model agreement and error metrics were 
computed using the root mean square error (RMSE) and 

the determination coefficient (R2). 

2.3 CO2 assimilation by vegetation modeling. 

CO2 assimilation by vegetation (GPP), can be estimated 
by means of the Light Use Efficiency (LUE) models. 

These models relate the incident solar radiation with the 
photosynthetic activity of the plant through the LUE 

parameter (Ɛ), which is the amount of biomass 

produced per unit of absorbed radiation. The GPP was 
estimated using an adaptation of the Monteith equation 

(1972) at daily scale and at 500 m spatial resolution: 

   (7) 

where GPP is measured in gC m-2, PAR (MJ m-2) is 

photosynthetically active radiation and FPAR 

(dimensionless) is the fraction of PAR absorbed by 

vegetation and ε the LUE parameter (gC MJ-1).  

The MODIS FPAR product (MCD15A3H) was 

used with a total of 157 images for the study period and 

was linearly interpolated to obtain daily values.  

The PAR values were obtained from the flux tower 
radiation sensor, with a reduction factor of 0.48 

according to Szeicz (1974).  

For ɛ, a maximum value of 0.841 g C·MJ-1 was used 

(ɛmax). This value was taken from Biome-Property-
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Look-Up-Table (BPLUT) (Running y Zhao 2019) for 

open shrublands coverage, considered to be a fairly 

accurate estimate for ideal conditions of Juniper 
woodlands. This value were then decreased by two 

approaches: 

1) Forced by meteorological variables (called from 

now on Meteo): ɛmax is modified according to the 
meteorological variables that reduce the efficiency of 

the plant, the minimum daily temperature (Tmin) and 
the vapor pressure deficit (VPD). In this approach, we 

fitted a scalar Tmin and VPD by means of simple linear 

functions between 0 and 1 derived from the daily values 
of Tmin and VPD (Fig. 2). These linear functions are 

obtained using threshold values, where the minimum 
and maximum values for Tmin are 0 and 1 of scalar 

Tmin (increasing function) respectively; and minimum 

and maximum value for VPD correspond to 1 and 0 
values of scalar VPD (decreasing function) 

respectively.  

 

 

 

Figure 2 Scheme of linear equations for Meteo 

approach (Modified from Running y Zhao 2019). 

Upper and lower threshold values were taken for 

both variables (-8 and 8.8 ºC for Tmin; and 0.65 and 4.8 

kPa for VPD). These values were also obtained from 

the BPLUT for open shrublands. 

2) Forced by meteorological variables and a water 

stress index from TSEB evapotranspiration retrievals 

(called from now on WSI): ɛmax is reduced according 

to a water stress index between 0 to 1 (Eq. 8). 

𝑊𝑆𝐼 = 𝐸𝑇𝑑/𝐸𝑇𝑟  (8) 

Where WSI is the water stress index 

(dimensionless), ETd is the daily evapotranspiration 

(mm) and ETr the evapotranspiration reference (mm). 

The ETd was obtained by temporally upscalling 

instantaneous LE fluxes with solar radiation according 

to Cammalleri et al. (2014). ETr was estimated using 

FAO56 approximation (Allen et al 1998). Due to the 
non-linearity of the TSEB model, a shorter period of 

141 days with ETd data was used, with no interpolation. 

Results of the two LUE models were compared by 

calculating the RMSE (selection the same short period 

for both) where GPP was calculated as follows:  

𝐺𝑃𝑃 = 𝑁𝐸𝐸 − 𝑅𝑒𝑐𝑜 (9) 

where NEE is the net CO2 exchange of the 

ecosystem obtained from the EC tower data and Reco 
is the respiration of the heterotrophic part of the 

ecosystem estimated using a flux partitioning algorithm 
(Lasslop et al., 2010) implemented in the package 

REddyProc (Wutzler et al 2018). 

3 RESULTS AND DISCUSSION 

3.1 TSEB model 

Figure 3 shows the results obtained from the TSEB 

model vs. observed values. R2 and RMSE values for 

instantaneous net radiation, latent heat, sensible heat 
flux and soil heat flux are shown in Table 1. TSEB 

evaluation results against EC data yielded similar 
results than those reported in other studies (Kalma et al., 

2008), with average RMSE values for all fluxes below 

50 W m-2. This RMSE value allows daily upscale LE 
fluxes with an accuracy of ca. 1 mm·day-1. However, 

we found an underestimation of the estimated energy 
fluxes (Figure 3). This may be due to the use of MODIS 

images of 1000 m spatial resolution and the 

heterogeneity of the cover within the pixel. 
 

Figure 3. Modeled fluxes with TSEB vs Observed fluxes 

from EC tower. 
 

Table 1. R2 and RMSE between modeled and observed 

fluxes for the 204 images used. 

Flux R2 RMSE (W m-2) 

Rn 0.99 54 

LE 0.57 47 

H 0.92 63 

G 0.75 6 
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3.2 LUE model approaches. 

Figure 4 shows the temporal evaluation of EC GPP and 

the two LUE model approaches during the study period. 

The R2 and RMSE are shown in Table 2. 

 

Figure 4. Temporal dynamics of GPP for EC and the 

two LUE-models. 

The GPP values obtained using the LUE models 
were similar to those obtained for global scale studies 

(Gilabert et al., 2015). The RMSE obtained (Table 2) of 

0.9 g C m-2 day for Meteo and 0.7 for WSI were 
acceptable, although somewhat higher than those 

reported in natural Mediterranean ecosystems using 
more local scales (Gómez-Gíraldez et al., 2018). On the 

other hand, the value of R2 obtained was low due to the 

overestimation of the model in the summer season for 
Meteo and an underestimation in the wet period for 

WSI.  

Table 2. R2 and RMSE between modeled GPP from the 

two LUE-Models and observed GPP from EC. We show 
in brackets values for the coincident shorter time period 

of 141 days. 

Approach R2 RMSE (g C-1 m-2 day) 

Meteo 0.32 (0.26) 0.9 (0.85) 

WSI 0.25 0.7 

When results are compared for the shorter common 

period for both models of 141 days, results for Meteo 
are very similar and the WSI RMSE values are lower 

due to a better fit along the period of water scarcity. An 

example of the overestimation of Meteo can be seen in 
Figure 5, where both approaches are applied at regional 

scale on a summer day, where there is a elevated water 

stress in the study area. 

 

Figure5.GPP maps for Meteo and WSI.August 11,2014. 

However, although WSI improves the RMSE, it shows 

a lower R2 value, mainly due to overall underestimation 

out of these periods of water scarcity. A better solution 
for this type of ecosystem would likely be a hybrid 

solution which uses the Meteo approach but including 

stress factors for drought periods which will be 

evaluated in further analysis. 

4 CONCLUSIONS 

The TSEB and LUE models yielded satisfactory results 

in terms of RMSE as a first approximation for 

estimating both surface energy and CO2 fluxes in a 

Juniper woodlands: 

1- In the case of net radiation, latent heat, sensible heat 
and soil heat fluxes, evaluation results yielded an 

average RMSE of 54, 47, 63 and 6 W·m-2, respectively. 

2- Application of the LUE with meteorological data 
also yielded acceptable results (0.9 gC·m-2). Finally, 

using the WSI improved the model results (0.7 gC·m-
2) due to its best performance in water scarcity 

conditions. 

Future studies will extend the time series in the 
juniper ecosystem and will extend to other ecosystems 

in the RBD to study the peculiarities of the different 
ecosystems present in the Doñana National Park, as 

well as the use of higher spatial resolution images. 
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ABSTRACT - Evapotranspiration is a key parameter for water budget quantification over ecosystems and set up 
requirements for water balance modeling on temperate basins, such as the Chiloé Island. However, public 
institutions and stakeholders do not have enough instrumentation over the island to monitor the surface water 
requirements. Henceforth Remote sensing is an essential tool for contiguous spatial and temporal monitoring. 
Missions such as Landsat 8 & Landsat 9 provides thermal band, which can be used for Actual Evapotranspiration 
(ETa) estimation using Surface Energy Balance (SEB) models, however, the temporal and spatial resolution can 

be a restrictive limit for an adequate monitoring in areas with high cloud cover. To mitigate the lack of data, we 
used MOD16, Landsat SSEBop and Sentinel-2 coupled with the Evapotranspiration model Penman-Monteith-
Leuning V2 (PML-V2), a model that does not require the thermal channel to calculate ETa. The model was applied 
on Pudeto Basin, where Evapotranspiration measurements based on MOD16 and SSEBop provide error from 1.13 
and 1.14 mm day-1, respectively. The PML-V2 showed a well performance with an R² of 0.89 and RMSE of 1.46 
mm day, however, shows a clearly bias (1.32 mm day-1). This model was implemented on an interactive Google 
Earth Engine Python API & Shiny web-based application and readily available for Chile's National Geology and 
Mining Service (SERNAGEOMIN). Thus, this platform helps stakeholders for take decisions on Pudeto Basin. 

 
1 INTRODUCTION  

 
The Evapotranspiration (ET) is a key parameter 

for estimate the water consumption of basin to 
determinate the amount of irrigation or calculate 
precisely the water balance (Wanniarachchi & 
Surakkalige, 2022). he relevance of calculate the water 
consumption lies to adapt the water management of 

temperate ecosystems on the phenological state and 
avoid climatic variation associated to the precipitation 
amount (Garreaud et al., 2020). 
 

Remote sensing is an economic and efficient 
technique for spatially contiguous and frequent 
information of actual evapotranspiration (ETa) 
retrievals, based on surface energy balance models 

(SEB). These models can be categorized as single layer, 
two-layer, two-patch, dual-source, multi-patch and 

multi-layer models (Zhang et al., 2016). Single layers 
models have been widely used to estimate ETa at 
regional scale, such as SEBAL, METRIC, SEBS and 
SSEBop (Bastiaanssen et al., 1998, Allen et al., 2007, 
Su, 2002, Senay et a., 2013). However, exists also 
biophysical models based on the water and carbon 
coupling models, which models the stomatal 
conductance and the soil fluxes for retrieve the 

transpiration, the gross primary productivity and the 
gross primary productivity such as PML-V2 (Zhang et 
al., 2016). 
 
 These models mentioned where evaluated in 
this area in the study from Moletto-Lobos et al. 2020, 
where aimed the importance of the usage of these 
models for irrigation scheduling or water balance 

modelling. The results shown that PML-V2 at 500m 
from MODIS and SSEBop from Landsat 7-8 (100m) 
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provided a good performance for evaluation. Landsat 8 
is useful for provide an operational modelling, however, 
the PML-V2 from MODIS does not update periodically 
this dataset and the coarse resolution difficult the 
evapotranspiration retrieval at field scale. However, the 
actual evapotranspiration from MOD16 (Running et al., 
2019) product is already operational and has not been 

evaluated over the study area. In another hand, PML-
V2 is based on calculation based on Leaf Area Index 
(LAI) and Surface emissivity, the first variable can be 
obtained from medium resolution satellite such as 
Sentinel-2 (Pasqualotto et al., 2019) and the surface 
emissivity for this area, ASTER GED (Hulley et al., 
2015) has been proved to be a suitable auxiliary 
parameter (Moletto-Lobos et al., 2017). 

For this reason, our aim is developing an operational 
multi-resolution web-platform for monitoring the 
evapotranspiration of Pudeto Basin from Chiloé Island 
for water balance modelling and evaluate with data in 
situ.  
 
2 AREA AND METHODS  

 

2.1 Study Area 

 
Figure 1. Study Area. The “home” point corresponds 
to the Matilda Validation Site and the tags are the 
Pudeto sub-basins. 
 
The study region the Pudeto Basin on Chiloé Island 

(Figure 1). This region includes the north part along the 
large island of Chiloé. According to the Koppen–Geiger 
classification system, the regional climate corresponds 
to marine west coast (Cfb), with an average annual 
temperature of 10 °C and annual rainfall of 2100 mm 
(Sarricolea et al., 2017). The wet season extends from 
March to November but most precipitation falls in 
winter (44%) when the mid-latitude austral storm tracks 

move northward into the region. A dry season develops 
during the austral summer due to a southward 
expansion of the Mediterranean-like regional 

circulation system prevailing year-round to the north, 
with minimum seasonal soil moisture levels and 
frequent drought conditions occurring during February 
and early March. In the point is shown the Matilda 
Validation Site, which is on a rainfed grassland cover.  
 
2.2 Methods  

 
The methods is three ET source product based on low, 
medium and high spatial resolution dataset.  

1. Low Resolution 500m (MOD16A2) 
(Running et al., 2019) 

2. Medium Resolution – Landsat 8 and Landsat 
9 SSEBop (100m) 

3. High Resolution – PML_V2 LAI SeLi based 

(20m) 
 

 
Figure 2. Flowchart of PML_V2 processing 
 

The MOD16 product is retrieved from Google Earth 
Engine (Gorelick et al., 2017). SSEBop (Senay et al., 
2013) is based on the simplification of Evaporative 
fraction using the Land Surface Temperature (LST) 
from the single channel method (Jímenez-Muñoz et al., 
2014) and applied to the calculation of ETa (Eq 1 & 2). 
The validation of LST product is detailed in Moletto-
Lobos et al., (2020). The model used on Sentinel 2 is 

the PML_V2 (Zhang et al., 2019) which is based in the 
separation of transpiration (T) and evaporation (E). T 
component is coupled with carbon cycles, through a 
conductance model to estimate T and GPP (Gan et al., 
2018). Thus, E is derived indirectly with the GPP. 
water‑carbon coupled canopy (Figure 2, Eq 3). Those 
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datasets were evaluated with ET0 in situ for period 
2021-2022 using coefficient of determination (R2), the 
bias, the standard deviation of residual (sigma), the root 
mean squared error (RMSE), the relative root mean 
squared error (RRMSE) and mean absolute error 
(MAE) in comparison with Matilda Validation Site, and 
automatic weather station which contains the same 

sensors provided as OCS from Mattar et al., 2016. 
 
2.3 Software used 

 
The software used is based on Python GEE API 
platform, R-Shiny, PostgreSQL and Google Cloud 
console modules.  
The PML_V2 is based on the source code of PML 

(https://github.com/gee-hydro/gee_PML) and applied 
to Sentinel-2 parameters. 
The platform is mounted on https://app.agrospace.cl 
 
2.4 Equations  

 

𝑬𝑻𝒂 = 𝜦𝒌𝑬𝑻𝟎 (1) 

Where,  
ET0 is the standardized reference evapotranspiration 

(Allen et al., 2005) 
k is the parameter that scales the reference grass 
vegetation experiencing maximum ET by an 
aerodynamically rougher crop 
Λ is the evaporative fraction 

𝚲 =
𝑻𝒉𝒐𝒕−𝑻𝒔

𝒅𝑻
=

𝑻𝒉𝒐𝒕−𝑻𝒔

𝑻𝒉𝒐𝒕−𝑻𝒄𝒐𝒍𝒅
 (2) 

(3) 
Where, 
Qa is the Net Radiation or total available energy (Qa,s 
in soil, Qa in canopy) [W/m2]. 

Cp corresponds to the specific heat of the air [J/kg °C]. 
Ga corresponds to aerodynamic conductance [m/s]. 
Gc corresponds to the exchange interface between leaf 
stomata and environmental variables [m/s]. 
Da corresponds to the water vapor deficit [kPa]. 
ε corresponds to the slope of water saturation at air 
temperature [kPa/°C]. 

𝛾 corresponds to the psychrometric constant [kPa/°C]. 
ρ corresponds to the air density [kg/m3]. 

 
3 RESULTS 

 
The performance of every ET model is shown in Figure 
3 and Table 1. Sentinel 2 ET showed the best similarity 
to the in-situ with R2 of 0.89 and sigma of 0.63, 
however there is a bias over the ET of 1.32 mm day-1, 
derived mainly during winter period which does not 
represent well the radiative limitation for that period.  

 
Figure 3. Scatterplot of Evaluation of ET products. X 
and Y axis correspond to mm/day. 

 
 
Table 1. Summary of statistics over sites 

Stat Landsat 8 Sentinel 2 MOD16 

Bias -0.22 1.32 0.74 

Sigma 1.12 0.63 0.86 

RMSE 1.14 1.46 1.13 

RRMSE 38.89 47.05 51.95 

MAE 0.85 1.32 0.8 

R² 0.79 0.89 0.7 
Linear 

fit 
y = 0.56x 

+1.07 
y = 0.76x 

+2.06 
y = 0.81x 

+1.16 
 
The SSEBop model and MOD16 showed a well 
performance with a bias under of -0.22 mm day-1 and 

0.74 mm day-1, respectively. MOD16, a LAI based 
model present a RMSE of 1.13, similar to SSEBop 
(SEBS-thermal based model) does not present an strong 
bias over the dataset. We can hypothesize that the LAI 
retrieval of Sentinel-2 should it be assessed and be 
evaluated using in situ parameters for validate the 
intermediate parameter for provided an adjusted 
unbiased model. Besides, for the time series all models 
(Figure 3) showed an expected phenological behaviour 

in similarity within situ data. The constellation of 
Landsat 8-9 provided a good frequency of data and 
assessed a good performance with the lowest absolute 
and relative error in comparison of another method and 
expected that LST showed as a key component for 
perform the evapotranspiration retrieval (Hook et al., 
2019), however, in contrast of Sentinel-2 or MOD16A2 
dataset does not have the same frequency of parameter, 

which provide the challenge of perform a good 
computation at yearly scale, in contrast of MOD16A2 
which provide a good performance besides the spatial 
resolution and almost 8-day value for the whole basin 
and pixel evaluation. 

𝐸𝑇 = 𝐸 + 𝑇 =
𝜀𝑄𝐴,𝑠

𝜀+1
+
𝜀𝑄𝐴+

𝜌𝑐𝑝

𝛾
𝐷𝑎𝐺𝑎

𝜀+1+
𝐺𝑎
𝐺𝑐
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Figure 4. Time series over Matilda site. 
 
The web-based platform (Figure 5) provides the 
performance of all the time series data available for all 
missions (MODIS since 2002, Landsat 8 – 9 from 2013 
and Sentinel-2A/B from 2019). Also, has the 

capabilities to calculate the daily, accumulated and 
mean evapotranspiration over the basin and sub-basin 
required for SERNAGEOMIN stakeholders. All data 
can be downloaded in .csv format from time series or 
.TIFF data for technical assessment. The Matilda 
Validation Site is connected operative, so the Figure 3, 
4 and table 1 is in constantly updating processing when 
the station and satellite data connects for update the 

dataset. 
 

 
Figure 5. Example of the web platform. 
 

4 CONCLUSIONS 
 

In this work, we applied three Evapotranspiration 
models with different methods and resolutions for 
provide data to an operational GIS-based portal. This 
dataset where calibrated and evaluated with in situ data. 
Low (R2 0.7, RMSE: 1.13 mm day-1) a medium 
resolution (R2 0.79, RMSE: 1.14 mm day-1) performed 

an adequate performance for water balance modelling. 
The Sentinel 2 based product provide a novelty product 
of evapotranspiration with a very good linear 
relationship (R2 0.89). Also, it can be seen from low 
variability induced in error (sigma: 0.63 mm day-1). 
However, show an important bias which impact into the 
RMSE up to 1.42 mm day-1 and giving an absolute error 

of 1.32 mm day-1. The model can be adjusted correcting 
the LAI retrieval in the product, which can be improved 
collecting LAI in situ and used more biophysical LAI 
models based on artificial intelligence mixed with 

radiative transfer model for inversion such as ARTMO 
(Verrelst et al., 2011). All those parameters are ready to 
analysis and use for SERNAGEOMIN users for 
processing and get Ready-to-analysis datasets in a 
operational context. 
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ABSTRACT - The temperature data acquired by the AVHRR (Advanced Very High-Resolution Radiometer) 
sensors since the early 80s cannot be used for a better knowledge of climate warming, due to the orbital drift of 
the NOAA (National Oceanic and Atmospheric Administration) satellite series carrying them. Even though 

various methods have been presented in the literature to correct this orbital drift effect, the lack of validation 
data has prevented their practical application. However, basing us on alternative satellite data, namely MSG-
SEVIRI (Meteosat Second Generation - Spinning Enhanced Visible and InfraRed Imager), we can design and 
validate orbital drift correction methods. Indeed, this sensor spatial resolution is similar to the footprint of 
available AVHRR datasets, while its temporal resolution is fifteen minutes, allowing for the simulation of both 
drifted and reference time series for most land covers. In this work we simulated such time series for 177 land 
and 500 sea pixels and for all NOAA afternoon satellites (NOAA-7, 9, 11, 14, 16, 18 and 19). Pixels of all land 
covers show an effect of the orbital drift on surface temperature, although this effect is stronger for arid areas 
and the Southern Hemisphere. Such effect is characterized by the values of the bias and trend of the difference 

between reference and drifted time series, above 1K and around -1.5K per year respectively for the first four 
NOAA platforms. The correction we also present decreases difference trend values towards zero on land, except 
for the first two NOAA platforms (7 and 9), with absolute values around 0.1K per year. As for bias absolute 
values, these are around 0.3 K. Such correction improves on existing methods, although work is still needed for a 
complete removal of the orbital drift effect on NOAA-AVHRR derived surface temperatures, for example by 
including the effect of the daily temperature cycle in the statistical correction. 
 
1 INTRODUCTION  

 
Even though NOAA-AVHRR (National Oceanic and 
Atmospheric Administration – Advanced Very High-
Resolution Radiometer) satellites have been retrieving 
observations of our planet since the 80s, these data 
have been seldom used to analyze the evolution of the 
Surface Temperature (ST). The main reason for this 
resides in the orbital drift of NOAA platforms, which 

effect consists in a progressive decrease of the 
observed temperature through each satellite life span, 
due to a delay in the local overpass time (Price, 1990).  
The scientific literature includes various methods for 
this orbital drift effect correction (for a review, see 
Julien and Sobrino, 2021). However, validating these 
corrections is difficult, since no continuous 
measurements are available since the 80s at a spatial 

scale of the AVHRR sensor footprint. 
Although there is no access to in situ data to validate 
these corrections, we can use independent data to 
simulate the effect of the orbital drift on surface 
temperatures. The SEVIRI (Spinning Enhanced 
Visible and InfraRed Imager) sensor, onboard the 
MSG (Meteosat Second Generation) satellites, with a 
spatial resolution similar to the AVHRR data in the 
publicly available databases (see for example Pedelty 

et al., 2007), with a temporal resolution of 15 minutes, 

is fit for this task. 
In this work, we present the methodology we use to 
simulate the orbital drift effect for the different NOAA 
platforms, which allows us to analyze and correct the 
effect of this orbital drift on ST. 
 
2 DATA 
 

The Global Change Unit of the University of Valencia 
operates an MSG-SEVIRI receiving station since 
2007, although in this work, we have used the data 
corresponding to years 2013-2019 (inclusive). The 
SEVIRI sensor has a spatial resolution of 3km at nadir, 
with new data every 15 minutes. These data spread 
over 11 bands, 2 in the visible and near infrared 
spectrum (Vis06, Vis08), 2 in the middle infrared 

(Ir016, Ir039), and 7 in the thermal infrared (Wv062, 
Wv073, Ir087, Ir097, Ir108, Ir120, and Ir134). The 
detailed description of the reception systems, the pre-
processing, as well as the algorithms used to estimate 
surface temperatures can be found in Julien et al. 
(2015), Sobrino et al. (2020) and Sobrino and Julien 
(2021). Additionally, cloud masks for the 2013-2019 
period have been downloaded through EUMETSAT 
portal. 
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3 METHODS 
 
From the MSG-SEVIRI 15-minutes ST data between 
2013 and 2019, and by setting each satellite activity 
period as it appears in LTDR-V4 (Long Term Data 
Record – Version 4, Pedelty et al., 2007) dataset, we 
simulate orbital drifted ST time series for each of the 

following NOAA platforms: 7, 9, 11, 14, 16, 18, and 
19. To that end, we remove the observations labelled 
as cloudy, and we use the equations developed by 
Ignatov et al. (2004) to determine NOAA’s Equator 
crossing times, which allow for the estimation of local 
overpass time for any location. With these overpass 
times, we interpolate ST data from the two 
neighboring (in time) observations, in order to build 

the orbital drifted ST time series for the above-
mentioned NOAA platforms. We also build reference 
ST time series for each platform for analysis and 
validation purposes, using as reference overpass time 
14:30, 14:30, 13:30, 13:30, 14:00, 14:00 and 14:00 for 
NOAA-7, 9, 11, 14, 16, 18 and 19 platforms 
respectively. Details of the methodology can be found 
in Julien and Sobrino (2021). 

For our study, we have selected as study sites 500 
random pixels over sea, and the 177 BELMANIP 
(Baret et al., 2006) pixels over land which are located 
within the observation disk of MSG-SEVIRI. For each 
of these pixels, we use two statistical indicators to 
evaluate orbital drift impact, as well as the validity of 
its correction. These indicators are the bias, and the 
linear trend of the difference between the reference 

time series and the one which validity we want to 
assess. 
As for the orbital drift correction, we use once again 
the equations developed by Ignatov et al. (2004), in 
this case as a fit of the difference between the orbital 
drifted ST time series and a reference estimated from 
the first year of the activity period of the 
corresponding NOAA platform. 
 

4 RESULTS 
 

4.1 Orbital drift effect 
 

Figure 1 presents the orbital drift effect for NOAA-11 
platform for site 208, corresponding to a desert pixel, 

located at (25,159°; 22,71°) latitude and longitude. 
This effect is obtained by estimating the difference 
between the orbital drifted and the reference ST time 
series for this pixel and this platform. We see that the 
orbital drift impact for this pixel increases 
progressively with time, reaching 15K at the end of 
NOAA-11 satellite lifetime. We can also observe the 
presence of a seasonal component within this orbital 

drift, which amplitude increases with time. To this 
date, this seasonal component had not been identified 
in the literature. 

 
Figure 1. Orbital drift effect on Surface Temperature 
(in Kelvin degrees) for NOAA-11 platform for site 208 
(25,159°; 22,71°). 
 
In Figure 2, we display the value of the linear trend 
between the orbital drifted and reference ST time 

series, also for NOAA-11 platform, for each of the 
selected pixels, both over land and sea. We see that 
over land, pixels located in arid areas of the Southern 
Hemisphere are the ones suffering the strongest orbital 
drift effect. Mainly, arid and semi-arid areas are the 
ones showing the highest orbital drift effect, although 
most of the selected pixels over land show an effect 
higher than 0.5K per year.  

 
        
     0.0          0.5          1.0          1.5          2.0          2.5 

K/yr 
Figure 2. Orbital drift effect for NOAA-11 satellite on 

surface temperature (in K per year). 
 
On average, this effect is 1,5 ± 0,7 K per year over 
land. Over sea, the orbital drift effect is lower, around 
0,04 ± 0,17 K per year on average. In this latter case, 
pixels with extreme values are located in areas with 
persistent cloud cover. Although orbital drift effect 
over sea is lower than over land, this effect, when 

cumulated over several years, is of a similar 
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magnitude as the expected error on surface 
temperature estimation (0.5K), and therefore needs to 
be corrected. 
 
4.2 Correction validation 
 
Table 1 presents the trend values for the difference 

between the reference and orbital drifted ST time 
series for each NOAA platform (left), averaged over 
the 177 selected land pixels. We observe that the older 
platforms (NOAA-7, 9, 11 and 14) are the ones with 
the strongest orbital drift effect, with bias absolute 
values over 1K, and difference trend above 1K per 
year. As a matter of fact, following platforms orbits 
were designed to minimize its orbital drift during their 

first years on orbit. 
If we compare these values with the ones at the right 
of Table 1, referred to the same statistical parameters, 
this time obtained from the orbital drift corrected ST 
time series, we see that values of both statistical 
parameters have been reduced, although bias values 
remain relatively high. Numerically, absolute values of 
the difference trend after correction are almost null, 

except for NOAA-7 and 9 platforms, with values close 
to 0.1 K per year. As for bias absolute values, they are 
always below 0.3K. However, this remaining bias can 
be corrected a posteriori, by intercalibrating the 
simultaneous activity periods for different platforms, 
allowing the obtention of orbital drift corrected ST 
time series. 
 

Table 1. Analysis of the orbital drift effect for NOAA 
satellites over land (standard deviation between 
parentheses) on the left, and after correction on the 
right. 

 Before correction After correction 

Platform bias (K) 
trend 

(K/yr) 

bias 

(K) 

trend 

(K/yr) 

NOAA-7 
-1,30 
(0,76) 

-1,44 
(0,82) 

-0,19 
(0,62) 

0,12 
(0,54) 

NOAA-9 
-1,53 
(0,90) 

-1,52 
(0,86) 

0,00 
(0,69) 

-0,08 
(0,47) 

NOAA-11 
-1,99 
(1,27) 

-1,36 
(0,79) 

-0,24 
(0,88) 

0,02 
(0,27) 

NOAA-14 
-2,36 
(1,43) 

-1,43 
(0,79) 

-0,09 
(0,95) 

0,01 
(0,22) 

NOAA-16 
-0,59 
(0,41) 

-0,49 
(0,33) 

-0,22 
(0,89) 

-0,04 
(0,30) 

NOAA-18 
0,04 

(0,09) 
-0,03 
(0,04) 

-0,29 
(0,81) 

-0,02 
(0,10) 

NOAA-19 
0,05 

(0,10) 
-0,02 
(0,04) 

-0,29 
(0,83) 

-0,02 
(0,08) 

This remaining bias is due to the complex task of 
retrieving a reference time series in practical cases – 
here the first year of activity of each platform – since 
we do not have access to orbital drift free time series. 

Additionally, uncertainties due to atmosphere and 
cloud influence, for example, can introduce 
considerable variability in such reference time series. 
 
5 CONCLUSIONS AND PERSPECTIVES 
 
In this work, we have analyzed NOAA orbital drift 

effect on surface temperature. To this end, we have 
used MSG-SEVIRI data to simulate temperature time 
series, both over land and sea, with and without orbital 
drift. Thanks to these simulated data, we have 
evidenced the orbital drift effect of NOAA satellites 
for most of the analyzed pixels, and not only in arid, 
semi-arid and cultivated areas as mentioned in the 
literature. We have also presented a methodology for 

the correction of this orbital drift, with good results. 
However, corrected surface temperature time series 
present a remaining bias which needs for a posterior 
correction. 
To improve on the presented correction, a correct 
estimation of the reference time series is needed. To 
this end, we will analyze the orbital drift effect on the 
surface temperature annual amplitude. In a near future, 

we will also study the representativity of the simulated 
time series with MSG-SEVIRI data in regards to the 
time series observed with NOAA-AVHRR. 
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ABSTRACT- Droughts are one of the most complex natural hazards having large negative impacts on society, 
economy, and the environment. In the face of global climate change, the drought situation in many regions has 
already become more severe, with predicted increases in drought frequencies. Thermal infrared remote sensing 
data acquired from Earth Observation sensors allows the retrieval of information about the energy exchange 
between the surface and the atmosphere, and therefore it provides a valuable tool for drought monitoring. In this 

work, we show the results extracted from ECOSTRESS level 2 and level 4 products of Land Surface Temperature 
(LST) and Evaporative Stress Index (ESI), respectively. We selected sites with different land covers, including 
tropical forests, croplands, and semi-arid areas. Temporal series (period 2019-2022) of the different parameters 
were analyzed, and the LST product was validated over a tropical forest area in the Peruvian Amazon. Scatter 
plots of ESI vs. LST showed a negative linear correlation over all the sites, but these correlations were stronger 
over the tropical and semi-arid areas, and weaker over the agricultural areas. LST validation provided high 
accuracy, but precision exceeded 5 K. 
 

1  INTRODUCTION  

Droughts have become one of the major hazards under 
the current climate change scenario (IPCC, 2021). 

Satellite data allows the characterization of both spatial 
and temporal patterns of droughts and its impacts over 
different landscapes characterized by different spatial 
extents (Jiao et al. 2021). 
 
Characterization of droughts through evaporative 
indicators require the availability of Thermal InfraRed 
(TIR) data to quantify the energy exchange between the 
surface and the atmosphere. The ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) provides multispectral TIR data 
with 38-m in-track by 69-m cross-track spatial 
resolution. Its primary mission is to assess water use by 
plants and improve the accuracy of drought estimates 
which requires measuring surface land/water 
temperature. Data is available since 2018, and the TIR 

instrument has five bands in the 8-13 m spectral range, 
although only three of them are currently available 

(Anderson et al., 2021; Gorokhovich et al., 2022; 
Hulley et al., 2021; Hook et al., 2019). 
 
In this work we used ECOSTRESS level 2 and level 4 
products to analyse the temporal evolution of Land 
Surface Temperature (LST) and Evaporative Stress 
Index (ESI) over different sites, including also a 
validation of LSTs against in situ measurements over a 
tropical forest.  

2  METHODS  

2.1 ECOSTRESS products  

In this work we used ECOSTRESS ECO2LST and 

ECO4ESIPTJPL products. ECO2LST provides LST 
values retrieved from multispectral TIR data using the 
Temperature and Emissivity Separation (TES) 
algorithm (Gillespie et al., 1998).  
 
ECO4ESIPTJPL provides estimations of the ESI using 
the PT-JPL model (Fisher et al., 2008). ESI is a 
normalized remote sensing-based agricultural drought 
index, and it does not require information about the soil 

moisture status or rainfall, but rather diagnoses 
vegetation stress via impacts of elevated canopy 
temperature on the ET retrieval (Anderson et al., 2011). 
ESI has been demonstrated to be a valuable early 
warning indicator of stress at different spatial scales 
(e.g., Anderson et al. 2013; Yang et al. 2021). 
 
ECOSTRESS data were freely extracted through the 

tool Application for Extracting and Exploring Analysis 
Ready Samples (AρρEEARS). 
 
2.2 Test sites 
 
We randomly selected three sites with different land 
covers to analyse the temporal variations of LST and 
ESI. These test sites include Bourdeax (agricultural 

area), Barrax (agricultural area), and Somalia (arid 
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area). We added an additional test site located in 
Tambopata, in the Peruvian Amazon, where in situ 
measurements are available (Figure 1). 
 

 
Figure 1. Views of the test sites extracted from Google 
Earth ®. 

2.3 Validation data  

The test site located in Tambopata includes an 
instrumented tower where in situ measurements are 
continuously recorded. Among the different set of 
measurements, surface temperatures over the top of the 
canopy are measured using thermal radiometers 
Apogee SI-111 and Campbell IR-120. Shortwave and 
longwave components are also measured using Kipp & 

Zonen net radiometers (Figure 2). 

 

Figure 2. Tambopata validation site in the Peruvian 
Amazon. 

 

3  RESULTS  

3.1 Temporal series  

Temporal series of LST and ESI (2019-2022) were 
extracted from ECOSTRESS products over the sites 
presented in Section 2.2. Results are provided in Figure 
3. Mean values over the entire period are also presented 
in Figure 4. The tropical forest site (Tambopata) shows 

the lowest variation (standard deviation) in LST and 
ESI, with values of 301±5 K and 0.84±0.07, 
respectively. It also shows the highest values of ESI. In 
contrast, the agricultural and semi-arid sites show 
higher variations of LST and ESI, and agricultural areas 
show the lowest mean values of ESI. 
 
Figure 5 includes scatter plots of ESI versus LST. These 

plots show a clear negative linear correlation between 
these two parameters, which indicates that drought 
conditions (low ESI values) are favoured by high 
temperatures. The highest correlation coefficients wer 
obtained for Tambopata and Somalia sites. In any case, 
not all the relationships are statistically significant, and 
LST is not the only factor controlling the 
evapotranspiration regime.  

 
Tambopata 

 
 

Somalia 

 
 

Barrax 

 
 

Bourdeax 

 
Figure 3. Temporal series of Land Surface 
Temperature (LST) and Evaporative Stress Index (ESI) 
over different sites (see Figure 1). 
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Figure 4. Mean values of Land Surface Temperature 
(LST) and Evaporative Stress Index (ESI) over the 
period 2019-2022 for the different sites (Tambopata – 
TAM, Somalia – SOM, Barrax – BAR, Bourdeaxu – 

BOUR). 
 
Tampobata  Somalia 

  
 

Barrax   Bourdeaux 

  
Figure 5. Scatter plots of Evaporative Stress Index (ESI) 
and Land Surface Temperature (LST) for the period 
2019-2022 over the different sites. 

3.2 Validation over the Tambopata site  

LSTs extracted from ECO2LSTE product were 
compared against in situ measurements collected over 
the tower located in the Tambopata site. Results show a 
high accuracy of the product, with a bias near to 0 K, 

but low precision, with a standard deviation value 
exceeding 5 K (Figure 6). 
 
We also analyzed band emissivities extracted from the 
ECO2LSTE product (Figure 7). Because the site is 
characterized by an evergreen broadleaf forest, it is 
expected that emissivities remain more or less constant 

over the whole period, with values higher than 0.98. 
Temporal series of emissivities show these expected 
variations in most cases, but also anomalous low values 

over particular dates (especially for band 12.09 m). 
However, removal of these anomalous values did not 
improve the LST validation statistics.  
 

 
Figure 6. Validation of Land Surface Temperature (K) 
extracted from the ECOSTRESS product over the 
Tambopata site. 
 

 

 

 
Figure 7. Temporal series of band emissivities 
(ECO2LSTE product) over the Tambopata site. 
 

 
Figure 8. Temporal series of atmospheric water vapor 
content over the Tambopata site. 
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The low precision obtained in the validation may be 
also attributed to strong atmospheric absorption over 
this tropical site (Figure 8), with total atmospheric 
water vapor values ranging between 2 and 5 g/cm2 
(mean value of 3.6±0.9 g/cm2). 
 
4  CONCLUSIONS 

 
ECOSTRESS is one of the scarce Earth Observation 
sensors providing multispectral TIR data at high spatial 
resolution. These data are useful for a number of 
applications, especially those related to the monitoring 
of evapotranspiration and detection of drought 
conditions.  
 

In this work we showed results extracted from 
ECO2LST and ECO4ESIPTJPL products, which 
include LST (and emissivities) and ESI values, 
respectively, over different land covers. ESI is indicative 
of stress conditions, and its sensitive to different sites 
and land covers. It also shows a negative linear 
relationship with LST, although ESI also depends on 
other factors. Validation of ECO2LSTE product over 

one tropical forest site provides high accuracy (-0.1 K) 
and low precision (>5K), may be due to the high 
atmospheric absorption of the validation site.  
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ABSTRACT - Due to its impact on our ecosystem (e.g., vegetation, soil, water, etc.), global change has become 

more significant over time. Therefore, several biophysical indices (i.e., Normalized Difference Vegetation Index, 
Modified Soil-Adjusted Vegetation Index, Normalized Difference Water Index, etc.) have been developed to 
quantify, assess, and monitor the ecosystem's reaction to these changes. Numerous and various satellite imagery 
might be integrated into multiple mathematical models to carry out this monitoring. One of the efficient models 
in this field is Time Series Analysis (TSA), which allows the decomposition of data into tree components (i.e., 
seasonality, irregularity, and trend). In this review paper, we considered more than 300 remote sensing 
algorithms of different satellites sensors (i.e., AVHRR [2010-2019], SPOT [2010-2014], ASTER [2010-2021], 
MODIS [2010-2022], Landsat 8 [2013-2022], and Sentinel-2 [2015-2022]). Definitively, 100 biophysical 

indices have been classified into four different categories (i.e., vegetation algorithms, soil algorithms, water 
algorithms, and other algorithms). Consequently, more than 300 algorithms were computed in order to conduct a 
comparative study of their quarterly time series trends from 2010 to 2022. Thus, more than 1800 hyperspectral 
remotely sensed images retrieved from six different satellites were used to monitor four Mediterranean climate 
zones (BWh: hot arid, BSk: cold arid, Csa: warm temperate hot summer, Cfa: warm temperate warm summer), 
as well as the whole Mediterranean region. The Mediterranean climate zones were selected based on Köppen 
Geiger classification. Accordingly, more than 34000 images have been computed, resulting in huge number of 
time series charts where many biophysical indices have taken specific forms. Finally, times series trend 

component was extracted using the Centered Moving Average [CMA] method. 

 
1  INTRODUCTION  

As the number of years increases, so does global 
change and its impact on our ecosystem (i.e., Storms, a 
lack of rain, heat waves, increasing sea levels, etc.), 
which poses a threat to human future on earth (Kim et 
al., 2018). Therefore, researchers studying this 

disaster, intensified their efforts to confront the growth 
of pests resulting from it, by jargonizing certain 
concepts (i.e., Energy efficiency, Recycling, 
Renewable Energy, etc.) and gradually integrating 
them into our daily lives. (Wang et al., 2011). 
However, quantifying and monitoring a problem's 
growth is thought to be the first step in finding a 
solution; in our case, this involves monitoring the 
damage caused by global change on vital sectors (i.e., 

vegetation, water, soil, burn), and that by developing 
biophysical indices for various categories (i.e., 
Normalized Difference Vegetation Index [NDVI] 
(Rouse et al., 1974), Soil Adjusted Vegetation Index 

[SAVI] (Huete, 1988), Normalized Difference Water 
Index [NDWI] (McFEETERS, 1996), etc.), these 
indices have been evolving over time, to keep up with 
the appearance of new remote sensing technologies 
and to expand its use on many global change studies. 

The output of computing these indices might be 

integrated into multiple mathematical models, and one 
of the most popular methods for analysing 
multitemporal data in general and remotely sensed 
data, in particular, is Time Series Analysis (Ezzaher et 
al., 2022; Naciri et al., 2022; Vogelmann et al., 2012), 
which quantify the changes occurring on a specific 
area of our earth over a certain time period, and also 
predict the future, with the potential to extract the four 
components (i.e., trend, seasonality, cycle, and 

irregularity). In this review paper, we present a 
versatile database containing more than 300 
algorithms of 100 biophysical indices on 6 different 
satellites (i.e., AVHRR, MODIS, SPOT VGT5, 
SENTINEL 2, ASTER, and LANDSAT 8), which are 
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characterized by different resolutions (temporal, 
spatial, and spectral), in addition to the application of 
these algorithms on more than 1800 images of the 6 
different satellites from 2010 to 2022 of the entire 
Mediterranean region and the 4 Mediterranean climate 
zones (BWh: hot arid, BSk: cold arid, Csa: warm 
temperate hot summer, Cfa: warm temperate warm 

summer) selected based on Koppen Geiger 
Classification (Beck et al., 2018), in order to conduct a 
time series study emphasizing these indices' trend 
components and their reaction to different parameters. 

3  MATERIALS AND METHODS 

3.1 Study area 

The study areas for this research are 4 Mediterranean 
climatic regions selected based on Köppen Geiger 
classification (i.e., warm temperate hot summer (Csa): 
Morocco-Tangier, cold arid (BSk): Spain-Murcia, 
warm temperate warm summer (Cfa): Italy-San 

Severo, hot arid (BWh): Libya-Tobruk) for high 
resolution satellite images, as well as the entire 
Mediterranean region for 1Km resolution satellite 
images (See figure 1). 

 

Figure 1. Study area  

Partitioning the study areas was based on the 
administrative zoning provided by OpenStreetMap 
database using OSM Server Side Scripting.  

3.2 Satellite data 

Satellite data used in this research are the study areas   

seasonal images from 2010 to 2022 of 6 different 
satellites products (i.e., AVHRR-AVH09C1, SPOT 
VGT 5-VGTS10, MODIS-MOD09GA, ASTER-
ASTL1T, SENTINEL 2-L1C, and LANDSAT 8-L2SP 
Collection 2), acquired from different platforms, 
respectively (LAADS DAAC, Terrascope, LPDAAC, 
and USGS) (Ben Achhab et al., 2018) (See table 1). 

The pre-processing of these images consisted of 
generating monthly composite images for AVHRR 
data, Cloud masking, and calibration. The later one 
was carried out for Sentinel 2, Landsat 8, and ASTER 
using the Semi-Automatic classification plugin 
(Congedo, 2021), As for SPOT data it was calibrated 
manually following the SPOT-VGT collection 3 
products user manual V1.2. 

3.3 Methods 

a) Biophysical indices computing 

100 biophysical indices and their algorithms on 6 
satellites (i.e., AVHRR, SPOT VGT5, MODIS, 
ASTER, SENTINEL 2, and LANDSAT 8) were 

assembled and sorted by year ascendingly, and by 
category (i.e., Vegetation, Water, Soil, Others), 
forming a significant and multipurpose database (see 
Table 2) (Bannari et al., 1995; Heiskanen, 2006; Yan 
et al., 2021). Then, using a self-developed software, 
we computed these algorithms and their means to 
generate seasonally time series for the 5 study areas 
from 2010 to 2022 (Ben Achhab et al., 2010). 

b) Time series analysis 

In Time Series Analysis (TSA), imputing missing 
values is crucial and it can be done using multiple 

methods (e.g, backward filling, forward filling, 
average filling, and interpolation). As our seasonal 
time series follow a yearly cycle, the average filling 
method was the most suitable. This method consists of 
filling in the missing quarter of year ‘X’ by averaging 
the value of the same quarter in year ‘X-1’ and ‘X+1’.  

Table 1. Satellite data. 

W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp S A W Sp

AVHRR Mediterranean X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 493 1 Km daily

SPOT Mediterranean X X X X X X X X X X X X X X X X X X 26 1 Km

 

composite

Tangier X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Murcia X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

San Severo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Tobruk X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Tangier X X X X X X X X

Murcia X X X X X X X X X X

San Severo X X X X

Tobruk X X X X X X

Tangier X X X X X X X X X X X X X X X X X X X X X X X X X X

Murcia X X X X X X X X X X X X X X X X X X X X X X X X X X X X

San Severo X X X X X X X X X X X X X X X X X X X X X X X X X X

Tobruk X X X X X X X X X X X X X X X X X X X X X X X X X X X

Tangier X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Murcia X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

San Severo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Tobruk X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

15-30 m 16 days

-

Spatial 

resolution

Temporal 

reolution

250 m 1-2 days

15-90 m

10-60 m 10 days

6.82

76

122

Total Size 

(GB)

MODIS 14

2022

ASTER

SENTINEL

LANDSAT

2016 2017 2018 2019 2020 20212010 2011 2012 2013 2014 2015
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Table 2. Biophysical indices algorithms 

 

 

AVHRR Sentinel 2 Landsat 8 ASTER MODIS SPOT

SR 1969 band2 / band1 band8 / band4 band5 / band4 band3 / band2 band2 / band1 band3 / band2

NDVI 1973 (Band2 - Band1)/(Band2 + Band1) (Band8 - Band4)/(Band8 + Band4) (Band5 - Band4)/(Band5 + Band4) (Band3 - Band2)/(Band3 + Band2) (Band2 - Band1)/(Band2 + Band1) (Band3-Band2)/(Band3+Band2)

TVI 1975 sqrt(0.5 + NDVI) sqrt(0.5 + NDVI) sqrt(0.5 + NDVI) sqrt(0.5 + NDVI) sqrt(0.5 + NDVI) sqrt(0.5 + NDVI)

DVI 1979 Band2 - Band1 Band8 - Band4 Band5 - Band4 Band3 - Band2 Band2 - Band1 Band3 - Band2

GDVI 1979 band8 - band3 band5 - band3') Band3 - Band1 Band3 - Band1

CTVI 1984
((NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

((NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5)

((NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

((NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

((NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

SAVI 1988
((1 + L)*(Band2 - Band1))/

(Band2 + Band1 + L), L=0.5

((1 + L)*(Band8 - Band4))/

(Band8 + Band4 + L), L=0.5

((1 + L)*(Band5 - Band4))/

(Band5 + Band4 + L), L=0.5

((1 + L)*(Band3 - Band2))/

(Band3 + Band2 + L), L=0.5

((1 + L)*(Band2 - Band1))/

(Band2 + Band1 + L), L=0.5

((1 + L)*(Band3 - Band2))/

(Band3 + Band2 + L), L=0.5

WDVI 1989 band2 - γ band1,  γ=1.06 band8 - γ band4,  γ=0.5 band5 - γ band4,  γ=1.06 band3 - γ band2,  γ=1.06 band2 - γ band1,  γ=1.06 band3 - γ band2,  γ=1.06

IPVI 1990 band8 / (band4 + band8) band5 / (band4 + band5) band3 / (band2 + band3) band3 / (band2 + band3)

NDGI 1991 (band3-band4)/(band3+band4) (band3-band4)/(band3+band4) (band1-band2)/(band1+band2) (band1-band4)/(band1+band4) (band1-band2)/(band1+band2)

ATSAVI 1991

[a*(band2 - a*band1 - b)] /

 [band1 + a*band2 - a*b + X*(1 + a2)], 

a = 1.22, b = 0.03, X = 0.08

a*(band8 - a*band4 - b)] / 

[band4 + a*band8 - a*b + X*(1 + a2)], 

 a = 1.22, b = 0.03, X = 0.08

[a*(band5 - a*band4 - b)] /

 [band4 + a*band5 - a*b + X*(1 + a2)], 

 a = 1.22, b = 0.03, X = 0.08

[a*(band3 - a*band2 - b)] /

 [band2 + a*band3 - a*b + X*(1 + a2)], 

 a = 1.22, b = 0.03, X = 0.08

[a*(band2 - a*band1 - b)] /

 [band1 + a*band2 - a*b + X*(1 + a2)], 

 a = 1.22, b = 0.03, X = 0.08

[a*(band3 - a*band2 - b)] / 

[band2 + a*band3 - a*b + X*(1 + a2)], 

a = 1.22, b = 0.03, X = 0.08

RI 1991 (band4-Band3)/(band4+Band3) (band2-band1)/(band2+band1) (band2-band1)/(band2+band1)

GEMI 1992

eta*(1-0.25*eta)-((band1 -0.125)/

(1-band1))

  eta= (2(band2^2-band1^2)+1.5*band2 

+0.5*band1)/(band2+band1+0.5)

eta*(1-0.25*eta)-((band4-0.125)/

(1-band4)),  

eta= (2(band8^2-band4^2)+1.5*band8 

+0.5*band4)/(band8+band4+0.5)

 eta*(1-0.25*eta)-((band4-0.125)/

(1-band4)),  

eta= (2(band5^2-band4^2)+1.5*band5 

+0.5*band4)/(band5+band4+0.5)

eta*(1-0.25*eta)-((band2-0.125)/

(1-band2))

eta= (2(band3^2-band2^2) + 1.5*band3  

+0.5*band2) / (band3 + band2+0.5)

eta*(1-0.25*eta)-((band1-0.125)/

(1-band1)),  

eta= (2(band2^2-band1^2)+1.5*band2 

+0.5*band1)/(band2+band1+0.5)

eta*(1-0.25*eta)-((band2-0.125)/

(1-band2)),  

eta= (2(band3^2-band2^2)+1.5*band3 

+0.5*band2)/(band3+band2+0.5)

ARVI 1992
(band8 - band4 -y*(band4 - band2))/

(band8 + band4 -y*(band4 - band2)), y=1

(band5 - band4 -y*(band4 - band2))/

(band5 + band4 -y*(band4 - band2)), y=1

(band2 - band1 - y*(band1 - band3))/

 (band2 + band1 -y*(band1 - band3)), y=1

GRVI 1993 band8/band3 band5/band3 band3/band1 band1/band4 band3/band1

NLI 1994 ((band2^2)-band1)/((band2^2)+band1) ((band8^2)-band4)/((band8^2)+band4) (band5^2)-band4)/((band5^2)+band4) ((band3^2)-band2)/((band3^2)+band2) ((band3^2)-band2)/((band3^2)+band2)

RENDVI 1994 (band8-band5)/(band8+band5)

MSAVI 1994
0.5*(2*Band2 + 1 - sqrt((2*Band2 + 1)^2 - 

8*(Band2 - Band1)))

0.5*(2*Band8 + 1 - sqrt((2*Band8 + 1)^2 - 

8*(Band8 - Band4)))

0.5*(2*Band5 + 1 - sqrt((2*Band5 + 1)^2 - 

8*(Band5 - Band4)))

0.5*(2*Band3 + 1 - sqrt((2*Band3 + 1)^2 - 

8*(Band3 - Band2)))

0.5*(2*Band2 + 1 - sqrt((2*Band2 + 1)^2 - 

8*(Band2 - Band1)))

0.5*(2*Band3 + 1 - sqrt((2*Band3 + 1)^2 - 

8*(Band3 - Band2)))

SARVI 1994

(1+L)*(band8-band4-y*(band4-band2)) / 

(band8+band4-y*(band4-band2)+L),  

y=1  L=0.5

(1+L)*(band5-band4-y*(band4-band2)) / 

(band5+band4-y*(band4-band2)+L),  

y=1  L=0.5

(1+L)*(band2-band1-y*(band1-band3)) / 

(band2+band1-y*(band1-band3)+L), 

 y=1  L=0.5

NPCI 1994 (band4-band2)/(band4+band2) (band4-band2)/(band4+band2)

EVI 1995

G*(Band8 - Band4)/

(Band8 + C1*Band4 - C2*Band2 + L), 

G= 2.5  C1=6  C2=7.5  L=1

G*(Band5 - Band4)/

(Band5 + C1*Band4 - C2*Band2 + L), 

G= 2.5  C1=6  C2=7.5  L=1

G*(Band2 - Band1)/

(Band2 + C1*Band1 - C2*Band3 + L),

 G= 2.5  C1=6  C2=7.5  L=1

G*(Band3 - Band2)/

(Band3 + C1*Band2 - C2*Band0 + L), 

G= 2.5  C1=6  C2=7.5  L=1

RDVI 1995 (band2 - band1) / sqrt(band2 + band1) (band8 - band4) / sqrt(band8 + band4) (band5 - band4) / sqrt(band5 + band4) (band3 - band2) / sqrt(band3 + band2)  (band2 - band1) / sqrt(band2 + band1)  (band3 - band2) / sqrt(band3 + band2)

SIPI 1995 (band8-band2)/(band8-band4) (band5-band2)/(band5-band4)

GNDVI 1996 (Band8 - Band3)/(Band8 + Band3) (Band5 - Band3)/(Band5 + Band3) (Band3 - Band1)/(Band3 + Band1) (Band2 - Band4)/(Band2 + Band4) (Band3-Band1)/(Band3+Band1)

GARI 1996
(band8-(band3-γ(band2 - band4)))/

(band8+(band3-γ(band2-band4))) , γ=1,7

(band5-(band3-γ(band2-band4)))/

(band5+(band3 -γ(band2-band4))), γ=1,7

(band2-(band4-γ(band3-band1)))/

(band2+(band4-γ(band3-band1))), γ=1,7

MSR 1996
((band2/band1)- 1) / 

(sqrt(band2/band1)+ 1)

((band8/band4) - 1) / 

(sqrt(band8/band4) + 1)

((band5/band4) - 1) /

 (sqrt(band5/band4) + 1)

((band3/band2) - 1) /

 (sqrt(band3/band2) + 1)

((band2/band1) - 1) / 

sqrt((band2/band1) + 1)

((band3/band2) - 1) /

 (sqrt(band3/band2) + 1)

OSAVI 1996 (Band2 - Band1)/(Band2 + Band1 + 0.16) (Band8 - Band4)/(Band8 + Band4 + 0.16) (Band5 - Band4)/(Band5 + Band4 + 0.16) (Band3 - Band2)/(Band3 + Band2 + 0.16) (Band2 - Band1)/(Band2 + Band1 + 0.16) (Band3 - Band2)/(Band3 + Band2 + 0.16)

CI-G 1996 (band8/band3) –1 (band3/band1) –1 (band2/band4) –1

TTVI 1997 sqrt(0.5 + Abs(NDVI)) sqrt(0.5 + Abs(NDVI)) sqrt(0.5 + Abs(NDVI)) sqrt(0.5 + Abs(NDVI)) sqrt(0.5 + Abs(NDVI)) sqrt(0.5 + Abs(NDVI))

PSRI 1999 (band4-Band2)/Band8 (band4-band2)/band5 (band1-band3)/band2

RGR 1999 band4/band3 band4/band3 band2/band1 band1/band4

NDRE 2000 (Band8 - Band5)/(Band8 + Band5)

MCARI 2000
((band5 - band4)-0.2*(band5 - band3))*

(band5/band4)

CCCI 2000
((band8  - band5)/(band8  + band5))/

((band8  - band4)/(band8  + band4))

SLAVI 2000 band8/(band4+band11) band5/(band4+band6) band3/(band2+band4) band2/(band1+band6) band3/(band2+band4)

AFRI 1.6 2001
(Band8 - 0.66*band11) /

(Band8 + 0.66*band11)

(band5 - 0.66*band6) / 

(band5 + 0.66*band6)

(band3 - 0.66*band4) / 

(band3 + 0.66*band4)

(band2 - 0.66*band6) /

 (band2 + 0.66*band6)

AFRI 2.1 2001
(band8 - 0.5*band12) /

(band8+ 0.5*band12)

(band5 - 0.5*band7) /

(band5+ 0.5*band7)

(band3 - 0.5*band5) / 

(band3+ 0.5*band5)

(band2 - 0.5*band7) /

(band2+ 0.5*band7)

ARI 2001 (1/band3) - (1/band5)

TVI 2001
0.5 [120*(band8 - band3) -

 200*(band4 - band3)]

0.5*[120*(band5 - band3) -

 200*(band4 - band3)]

0.5*[120*(band3 - band1) - 

200*(band2 - band1)]

0.5*[120*(band3 - band1) - 

200*(band2 - band1)]

GLI 2001
(2*band3 - band4 - band2) /

(2*band3 + band4 + band2)

(2*band3 - band4 - band2) / 

(2*band3 + band4 + band2)

(2*band4 - band1 - band3) / 

(2*band4 + band1 + band3)

VARI 2002 (band3 - band4) / (band3 + band4 - band2) (band3 - band4) / (band3 + band4 - band2) (band4 - band1) / (band4 + band1 - band3)

TDVI 2002
1.5*(band8-band4)/

sqrt(band8^2+band4+0.5)

1.5*(band5-band4)/

sqrt(band5^2+band4+0.5)

MNLI 2003
((band8^2)-band4)*(1+L)/

((band8^2)+band4+L), L=0.5

((band5^2)-band4)*(1+L)/

((band5^2)+band4+L), L=0.5

GCI 2003 (band8/band3)-1 (Band5/Band3)-1 (Band3/band1)-1 (Band2/Band4)-1

LAI 2003 3.16 EVI - 0.118 3.16 EVI - 0.118 3.16 EVI - 0.118 3.16 EVI - 0.118

CI-RE 2003 (band8/band5) –1

RECI 2003 (band8/band5)-1

WDRVI 2004 (0.2*band8-band4)/(0.2*band8+band4) (0.2*band5-band4)/(0.2*band5+band4) (0.2*band2-band1)/(0.2*band2+band1)

MTVI1 2004
1.2 * [1.2*(band8-band3) - 

2.5*(band4-band3)]

1.2 * [1.2*(band3-band1) -

2.5*(band2-band1)]

1.2 * [1.2*(band3-band1) -

2.5*(band2-band1)]

MTVI2 2004

1.5*[1.2 (band8 - band3) - 2.5*(band4 - band3)] 

/sqrt[(2*band8 + 1)*2 - (6*band8 - 5*sqrt(band4)-

0.5]

1.5 * [1.2*(band3-band1) - 2.5*(band2-band1)] / 

sqrt[(2*band3 + 1)*2 - (6*band3 - 5*sqrt(band2)-

0.5]

1.5 * [1.2*(band3-band1) - 2.5*(band2-band1)] / 

sqrt[(2*band3 + 1)*2 - (6*band3 - 5*sqrt(band2)-

0.5]

GOSAVI 2005 (Band8 - Band3)/(Band8 + Band3 + Y), Y=0.16 (Band5 - Band3)/(Band5 + Band3 + Y), Y=0.16 (Band3 - Band1)/(Band3 + Band1 + Y), Y=0.16 (Band3 - Band1)/(Band3 + Band1 + Y), Y=0.16

GSAVI 2005
(1 + Y) *(Band8 - Band3)/

(Band8 + Band3 + Y), Y=0.5

(1 + Y) *(Band5 - Band3)/

(Band5 + Band3 + Y), Y=0.5

(1 + Y) *(Band3 - Band1)/

(Band3 + Band1 + Y), Y=0.5

(1 + Y) *(Band3 - Band1)/

(Band3 + Band1 + Y), Y=0.5

Normalized 

Near Infrared
2006 band8 / (band8+ band4 + band3) band5 / (band5+ band4 + band3) band3 / (band3+ band2 + band1) band2 / (band2+ band1 + band4) band3 / (band3+ band2 + band1)

CVI 2007 (band8*band4)/(band3^2) (Band5*Band4)/(Band3^2) (Band3*Band2)/(Band1^2) (Band3*Band2)/(Band1^2)

EVI2 2008
 2.5 * [(band2 - band1) /

 (band2 + 2.4 band1 + 1)]

2.5 * [(band8 - band4) /

 (band8 + 2.4 band4 + 1)]

2.5 * [(band5 - band4) /

 (band5 + 2.4 band4 + 1)]

2.5 * [(band3 - band2) / X

(band3 + 2.4 band2 + 1)]

2.5 * [(band2 - band1) /

(band2 + 2.4 band1 + 1)]

VIRE 2011 (10000 - band8) / (band6)^2

VIRRE 2011 band8/band6

RR 2014
(band8/band4)*(band3/band4)*

(band8/band6)

Gratio 2014 band3/band4 band4/band1

ENDVI 2015
((band8+band3)-(2*band2))/

((band8+band3)+(2*band2))

SVI 2017 (band8 - band6) / (band8-band6)

NDPI 2017
(band2-(0.74*band1+0.26*band6)) / 

(band2+(0.74*band1+0.26*band6))

CMRI 2018
[((band8-band4)/(band8+band4)) - ((band3-

band8)/(band3+band8))]

[((band5-band4)/(band5+band4)) - ((band3-

band5)/(band3+band5))]

[((band3-band2)/(band3+band2)) - ((band1-

band3)/(band1+band3))]

[((band2-band1)/(band2+band1)) - ((band4-

band2)/(band4+band2))]

[((band3-band2)/(band3+band2)) - ((band1-

band3)/(band1+band3))]

DNVI 2018 (band11-band12)^2 /sqrt(band1+band12) (band6-band7)^2 / sqrt(band6+band7) (band6-band7)^2 / sqrt(band6+band7)

NDII 1983 (band2-band6)/ (band2+band6)

MSI 1986 Band3/Band2 band11/band8 Band6/Band5 Band4/Band3 Band6/Band2 Band4/Band3

NDMI 1996 (Band2 - Band3)/(Band2 + Band3) (band8 -band11)/(band8 +band11) (Band5 - Band6)/(Band5 + Band6) (Band3 - Band4)/(Band3 + Band4) (Band2 - Band6)/(Band2 + Band6) (Band3 - Band4)/(Band3 + Band4)

NDWI 1996 (band3 -band8)/(band3 + band8) (Band3 - Band5)/(Band3 + Band5) (Band1 - Band3)/(Band1 + Band3) (Band4 - Band2)/(Band4 + Band2)

SRWI 2001 band2/band5

GVMI 2002
((band8+0.1)-(band11+0.02))/

((band8+0.1)+(band11+0.02))

((band5+0.1)-(band6+0.02))/

((band5+0.1)+(band6+0.02))

((band3+0.1)-(band4+0.02))/

((band3+0.1)+(band4+0.02))

((band2+0.1)-(band6+0.02))/

((band2+0.1)+(band6+0.02))

((band3+0.1)-(band4+0.02))/

((band3+0.1)+(band4+0.02))

SIWSI 2003 (band8 - band11) / (band8 + band11) (band5 - band6) / (band5 + band6) (band2 - band6) / (band2 + band6)

DSWI 2004 (band8 + band3) / (band11 + band4) (band5 + band3) / (band6 + band4) (band2 + band4) / (band6 + band1)

LSWI 2004 (band8 - band11)/(band8 + band11) (band5 - band6)/(band5 + band6) (band2 - band6)/(band2 + band6)

MNDWI 2006 (band3 - band11) / (band3 + band11) (band 3 – band 6) / (band 3 + band 6) (band1 - band4) / (band1 + band4) (band4 - band6) / (band4 + band6)

NMDI 2007
(band2-(band5-band6))/

(band2+(band5-band6))

NHI 2007 (band11-band3)/(band11+band3) (band6-band3)/(band6+band3) (band4-band1)/(band4+band1)

SSM 2010 band6/band7

AWEInsh 2014
4*(band3 + band11) - 

(0,25*band8 + 2,75*band12)

4*(band3 + band6) -

 (0,25*band5 + 2,75*band7)

4*(band4 + band6) -

 (0,25*band2 + 2,75*band7)

FMR 1982 band11 / band8 band6 / band5

IOR 1982 band4 / band2 band4 / band2

CMR 1987 band11 / band12 band6 / band7

NDSIsnow 1995 (band3-band11)/(band3+band11) (band3-band6)/(band3+band6) (band1-band4)/(band1+band4) (band4-band6)/(band4+band6) (band1-band4)/(band1+band4)

NDSI 2005 (band4 - band8) / (band4 + band8) (band4 - band5) / (band4 + band5) (band1 - band2) / (band1 + band2)

SI 2005 sqrt(band3*band4) sqrt(band3*band4) sqrt(band4*band1)

CSI 2005 band8/band12 band5/band7 band3/band5 band2/band7

BDI 2014 band4-band6

DBSI 2018 [(band11-band3)/(band11+band3)]-NDVI [(band6-band3)/(band6+band3)]-NDVI [(band6-band4)/(band6+band4)]-NDVI

TBI 2019 (band12-band3) / (band3-band11)

BLB1 2020 (band8A + band3) / (band12 + band4)

BLB2 2020 band11 / band4

NBR 1991 (band8 - band12)/(band8 + band12) (Band5 - Band7)/(Band5 + Band7) (Band3 - Band5)/(Band3 + Band5) (Band2 - Band7)/(Band2 + Band7) (Band3 - Band4)/(Band3 + Band4)

UI 1996 (band12-band8) / (band12+band8) (band7-band5) / (band7+band5) (band7-band2) / (band7+band2)

BAI 1998
1/

(((0.1 - Band1)^2) + ((0.06 - Band2)^2))

1/

(((0.1 - band4)^2) + ((0.06 - band8)^2))

1/

(((0.1 - Band4)^2) + ((0.06 - Band5)^2))

1/

(((0.1 - Band2)^2) + ((0.06 - Band3)^2))

NDBI 2003 (Band3 - Band2) /(Band3 + Band2) (band11 - band8) /(band11 + band8) (Band6 - Band5) /(Band6 + Band5) (Band4 - Band3) /(Band4 + Band3) (Band6 - Band2) /(Band6 + Band2) (Band4 - Band3) /(Band4 + Band3)

NDBaI 2006 (band6-band11) / (band6+band11)

BU 2010
((Band3 - Band2)/(Band3 + Band2))-((Band2 - 

Band1)/(Band2 + Band1))

((band11 - band8)/(band11 + band8)) - ((band8 - 

band4)/(band8 + band4))

((Band6 - Band5)/(Band6 + Band5)) - ((Band5 - 

Band4)/(Band5 + Band4))

((Band4 - Band3)/(Band4 + Band3)) - ((Band3 - 

Band2)/(Band3 + Band2))

((Band6 - Band2)/(Band6 + Band2)) - ((Band2 - 

Band1)/(Band2 + Band1))

EBBI 2012
(Band7 - Band5) /

 10*[sqrt(Band7 + Band11)]

CLSI 2013 ((band4 - band3) /  (band4+band3))+band6

VgNIR-BI 2015 (band3-band5) / (band3+band5)

VrNIR-BI 2015 (band4-band5) / (band4+band5)
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In this study, TSA consists of visualizing the data 
and decomposing its three main components (i.e., 
Trend, Seasonality, and Irregularity), wherefore, the 
multiplicative model was used to represent data (see 
equation 1): 

Yt = St  It  Tt (1) 

where Yt is the time series, St and Tt are respectively 

Seasonality and Trend.  

Besides, the Centered Moving Average (CMA) 
method was used to extract the trend component(Liu et 

al., 2020; Masselot et al., 2018). As a first step, a 
Moving Average (MA) was calculated with a width 
window of 4 (i.e., averaging the value of the window 
at time t and then moving it). Since the width window 
is an even number, its CMA was calculated to get 
smoothed data.  The next step was to deseasonalize the 
time series (i.e., eliminate the seasonal and the 
irregular components), to finally extract the trend by 

employing linear regression method providing the 
slope and intercept of the trend’s equation (see 
equation 2): 

T = a t + b (2) 

Where T is the trend, a and b respectively the slop and 
the intercept, and t the time code.  

4 RESULTS  

In this paper, computing indices yielded more than 
34000 output images and 1138 time series [(37 

SPOT’s algorithms + 21 AVHRR’s algorithms) x All 
Mediterranean region + (88 SENTINEL’s algorithms + 
48 ASTER’s algorithms + 75 LANDSAT’s algorithms 
+ 59 MODIS’s algorithms (see figure 2)) x 4 Climate 
zones = 1138], where their seasonality component are 
clearly apparent, especially for the warm temperate 
regions. 

Each time series trend was extracted using the 
CMA method, which resulted in a wealth of data that 

can be branched to many major studies in different 
fields (ASTER was excluded from this step as its data 
is insufficient to use this method). Resulting trends 
were represented by index, see figure below for an 
example of 30 indices trends. Trends graphs were 
framed by category (Vegetation, Water, Soil, and 
Others) as specified in table 2, and their time axis was 
represented seasonally from 2010 to 2021 (1: Winter, 

2: Spring, 3: Summer, and 4: Autumn), as for the Y 
axis it shows the indices values, with ranges adjusted 
for each index. 

In trends graphs, the clustering of each zones trends 
with an order that varies depending on the relevance of 

each index is obvious, which makes the area impact 
quite clear in the trend figures of most indices. 

It is also noticeable that in many instances, the 
trend of an index in the same zone measured by 
different satellites changes, and this may be because of 
a variety of factors, including the study time period of 
each satellite, since adding the value of one date would 

change the trend’s equation and thus the line. This is in 
addition to the variation of satellites characteristics, as 
each one has different temporal, spatial, and spectral 
resolutions, as mentioned in table 1, and this point has 
a significant impact on the response of the index as 
monitoring a zone with a spatial resolution of 10m is 
not the same as 500m and 1Km the same applies to the 
other types of resolutions.  

 

 

Figure 2. Biophysical indices Averages (MODIS images), 

1: Winter, 2: Spring, 3: Summer, and 4: Autumn 
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Figure 3. Biophysical indices trends 
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Figure 3. Biophysical indices trends, a: vegetation indices, b: water indices, c: soil indices, d: others indices 
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5 CONCLUSION 

In this research, a database assembling more than 300 
biophysical indices algorithms of 6 satellites (i.e., 
AVHRR, SPOT VGT5, MODIS, ASTER, SENTINEL 
2, and LANDSAT 8), sorted by category (i.e., 
Vegetation, Water, Soil, and Others) and by year was 
presented. Then, the database algorithms were used on 

1700 satellites images of 5 zones (Tangier, Murcia, 
San Severo, Tobruk, and all Mediterranean region) 
from 2010 to 2022, yielding more than 34000 output 
images and 1138 time series. Applying the CMA 
method on time series permitted the extraction of their 
trend component. Trends results demonstrated the 
impact of various factor such as climate zone, satellite 
resolutions, and time period, on indices responses. 
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ABSTRACT - From land degradation and desertification to cyclones and tropical storms, and so on, the 
repercussions of global change have become increasingly severe in recent years. Consequently, land cover 
forecasting is now required in order to assess and monitor such environmental impacts, although it remains a 
challenging task. Indeed, to study and analyse these impacts, several time series forecasting models have been 

widely developed. In this study, accuracy of the most used forecasting approaches has been quantified taking 
into consideration three impacts (i.e., climate regions, land cover, and satellite sensor). Firstly, three different 
forecasting approaches (i.e., Long Short Term Memory Network (LSTM), convolutional LSTM, and moving 
average) were used for predicting vegetation biophysical indices (i.e., Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI), Chlorophyll Vegetation Index (CVI), etc.). Secondly, eight 
Mediterranean regions (north and south) were selected (i.e., 2 regions hot arid, 2 regions cold arid, 2 regions 
warm temperate hot summer, 2 regions warm temperate warm summer) based on Köppen climate classification. 
Using 993 hyperspectral images retrieved from USGS satellite images database (i.e., MODIS, Landsat 8 
OLI/TIRS, and Sentinel 2) from 2015 to 2022. Accordingly, more than 20000 images were computed resulting in 

720 time series forecasted using the aforementioned approaches. Finally, 2160 forecasted time series has been 
determined and compared, and the computed approaches’ corresponding accuracies are showing interesting and 
promising results. 

Keywords: Mediterranean basin, vegetation forecasting, LSTM, moving average, time series. 

 
1  INTRODUCTION  

One of the foundational elements of the 
terrestrial ecosystem is vegetation which is considered 

as a significant environmental indicator. Indeed, 
vegetation can both influence and be influenced by 
various factor majorly relating to climatic changes. As 
well, forecasting studies in land use and land cover are 
extremely useful for analysing vegetation time series 
and predicting directions of future patterns and trends 
in a specific period of time. This, has been a 
challenging or impossible task until a few years ago. 

However, with the emergence of machine learning 
(Liu et al., 2017) methods based on artificial neural 
networks, complicated and deep features has become 
more accessible. 

Within this context, Mediterranean basin is 
considered in this study because it is one of the 
world’s biodiversity hot-spots due to it profound 
environmental heterogeneities and it complex 

historical biogeography (Mittermeier et al., 2011). So, 

using very high resolution satellite images of eight 
different climate regions (Köppen, 1900) selected 
from the Mediterranean zone  and derived from three 

different satellites (i.e., Sentinel-2, Landsat-8 and 
MODIS), we conducted a multitude of vegetation 
analysis based time series from 2015 to 2022, by 
computing 30 biophysical indices. Then, we quantified 
the accuracy of two types of forecasting approaches: i) 
statistical (i.e., Moving Average (MA)) and ii) machine 
learning (ML) approach (i.e., Long Short Term 
Memory Network (LSTM) (Hochreiter and 

Schmidhuber, 1997), Convolutional LSTM 
(ConvLSTM) (SHI et al., 2015)).  

The paper is organized as follows: first we 
present the materials including study areas and 
satellite data, then we explain both approaches in the 
context of time series forecasting then we present the 
results as we compare the accuracy of both approaches 
in order to analyse climate, land cover and sensor 

nexus impacts in the Mediterranean region. 

   58 

mailto:nraissouni@uae.ac.ma


2  MATERIALS  

2.1 Study areas 

In this work we used the Köppen-Geiger climate 
classification maps to select 8 study areas in the 
Mediterranean regions, four regions located in north 
and the other four in the south, with four different 
climate zones. The first four regions main climate is 

arid with hot and cold temperature (i.e. BWh: Libya- 
Tobruk, Egypt-Matrouh; BSk: Spain-Valencia, Spain-
Murcia), while the main climate for the other four 
regions is warm temprate (i.e. Cfa: Italy-Padova, Italy-
San Severo ; Csa: Morocco-Tangier, Algeria-Oran). 

 

Figure 1. Mediterranean regions 

2.2 Satellite data  

In this study, 7 years (from 2015 to 2022) of Landsat-8 
Operational Land Imager (OLI) surface reflectance 
data at 30m spatial resolution were used over the eight 
study areas, providing 331 hyper-spectral images with 
a total size of 255GB. In addition, Sentinel-2A data 
were derived between 2016 and 2022 over the eight 

study areas providing information in 13 bands in the 
visible, near intra-red and short wave infra-red 
spectrum at a 10, 20, and 60m spatial resolution 
depending on the band. Sentinel data size is 228GB 
with 302 images. MODIS Terra Surface Reflectance 
Daily products were used as well in this study, with 7 
 

bands at 500m and 1km with a total size 32GB.  

For each year, four images were selected representing 
the four seasons (see Table 1): Winter, Spring, 
Summer, and Autumn to monitor vegetation variation 
in studies regions. Both Landsat-8 and Sentinel-2A 
were downloaded through the United States 
Geological Survey (USGS) Earth Resources 

Observation and Science (EROS) Center Science 
Processing Architecture (ESPA), while MODIS 
images were downloaded from NASA's Earth 
Observing System Data and Information System 
(EOSDIS). 

3 METHODOLOGY 

Time series analysis and forecasting can be obtained 
by several methods of which there are statistical 
models such as AutoRegressive (AR), univariate 
Moving Average (MA), and Autoregressive Integrated 
Moving Average (ARIMA), etc. On the other hand, 

with the recent outbreak of more advanced machine 
learning algorithms and approaches, namely in deep 
learning (DL), new algorithms are developed to 
analyse and forecast time series data such as Recurrent 
Neural Networks (RNN), Convolutional Neural 
Networks (CNN), and latterly the Long Short Term 
Memory Network (LSTM). In our case, we have 
studied the accuracy of time series forecasting by 

adopting the Moving Average (MA) as statistical 
approach, and Long Short Term Memory Network 
(LSTM) (Ngoc Hai et al., 2020; Patterson and Gibson, 
2017) as well as the convolutional LSTM (Conv-
LSTM) as machine leaning approaches.  

3.1  Computed biophysical indices 

In order to evaluate and analyse both statistical and 
ML models accuracy relating to land cover 

forecasting, 30 different vegetation indices were 
assembled and sorted by year ascendingly.  Then, 15 
of them were computed using a self-developed 
software with a focus on producing their time series 
that will be applied in forecasting approaches. The 
Table 2 reorganizes 30 biophysical vegetation 
algorithms by year and satellite. 

Table 1. Satellite data 
LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL LANDSAT MODIS SENTINEL

Winter 03-jan 01-jan 08-fév 01-jan 23-jan 23-jan 02-jan 23-jan 29-déc 01-jan 14-jan 01-jan 13-jan 12-jan 13-jan

Spring 30-avr 29-avr 30-avr 13-avr 18-avr 24-avr 18-avr 30-avr 06-mai 30-avr 03-avr 21-avr 14-avr 22-avr

Summer 07-juil 05-juil 18-juil 05-juil 18-juil 02-juil 13-juil 02-juil 25-juil 05-juil 10-août 05-juil 24-juil 04-juil 03-juil 01-juil

Autumn 09-sept 22-sept 19-août 22-sept 02-sept 30-août 02-sept 11-sept 22-sept 30-nov 22-sept 12-oct 06-sept 01-sept

Winter 16-jan 10-jan 16-jan 02-jan 05-jan 09-jan 05-jan 05-jan 06-jan 17-jan 16-jan 12-jan 02-fév 16-jan 12-jan 16-jan 17-jan 20-jan 13-jan 13-fév

Spring 09-avr 07-avr 14-mar 09-avr 18-avr 15-avr 19-avr 21-avr 10-avr 19-avr 05-avr 09-avr 21-avr 05-mar 09-avr 01-mai 21-avr 29-avr 29-avr 16-avr 15-avr

Summer 09-juil 02-juil 20-juil 05-août 02-juil 17-juil 13-juil 04-juil 20-juil 15-juil 04-juil 14-juil 11-juil 02-juil 30-juil 11-juil 02-juil 30-juil 26-juil 18-juil 18-juil 05-juil 01-juil 12-juil

Autumn 27-sept 05-sept 24-sept 06-sept 05-sept 05-sept 22-sept 02-sept 28-sept 03-oct 02-sept 02-sept 15-oct 05-sept 18-sept 28-août 05-sept 08-oct 12-sept 29-sept 26-sept 23-sept 29-sept 30-sept

Winter 17-jan 05-jan 12-jan 12-jan 05-jan 13-jan 12-jan 18-jan 16-jan 07-jan 18-jan 10-jan 05-jan 16-jan 20-fév 05-jan 18-jan 01-jan 02-jan

Spring 07-avr 03-avr 12-avr 02-avr 03-avr 13-avr 27-avr 04-avr 16-avr 29-avr 04-avr 30-avr 25-avr 03-avr 06-mai 09-avr 03-avr 06-mai 08-avr 21-avr 25-mar 08-avr 08-avr

Summer 12-juil 28-juil 11-juil 08-août 28-juil 22-juil 16-juil 02-juil 02-juil 02-juil 02-juil 29-jui 30-juil 28-juil 15-juil 30-juil 28-juil 05-juil 29-juil 06-juil 03-juil 08-juil 11-juil 07-juil

Autumn 30-sept 24-sept 19-sept 11-oct 24-sept 20-sept 09-sept 09-sept 10-sept 06-oct 09-sept 17-sept 24-sept 13-sept 19-nov 24-sept 13-sept 30-août 21-sept 21-sept 12-oct 15-sept 15-sept

Winter 11-jan 02-jan 17-jan 16-fév 02-jan 16-jan 08-jan 11-jan 08-jan 27-fév 11-jan 20-jan 22-jan 02-jan 16-jan 22-jan 02-jan 16-jan 21-jan 24-jan 24-jan 18-jan

Spring 17-avr 17-avr 17-avr 05-avr 17-avr 01-avr 05-avr 01-avr 23-avr 31-mar 01-avr 10-avr 28-avr 17-avr 16-avr 27-mar 17-avr 27-mar 26-mar 20-avr 19-avr 22-avr 26-avr 13-avr

Summer 06-juil 16-juil 16-juil 24-jui 16-juil 05-juil 03-juil 03-juil 17-juil 05-juil 03-juil 04-juil 17-juil 16-juil 10-juil 17-juil 16-juil 15-juil 30-jui 19-juil 18-juil 11-juil 02-juil 02-juil

Autumn 24-sept 24-sept 19-sept 28-sept 24-sept 28-sept 28-sept 18-sept 18-sept 23-sept 18-sept 02-sept 19-sept 24-sept 23-sept 19-sept 24-sept 28-sept 04-oct 12-sept 21-sept 29-sept 23-sept 15-sept

Winter 07-jan 13-jan 17-jan 02-jan 13-jan 01-jan 11-jan 22-jan 18-jan 14-fév 22-jan 10-jan 09-jan 13-jan 11-jan 09-jan 13-jan 01-jan 24-jan 15-jan 14-jan 03-jan 17-jan 23-jan

Spring 13-avr 27-avr 17-avr 10-mai 27-avr 16-avr 08-avr 27-avr 11-avr 27-avr 25-avr 15-avr 27-avr 26-avr 01-mai 27-avr 27-mar 29-mar 20-avr 30-mar 25-avr 01-avr 18-avr

Summer 18-juil 09-juil 16-juil 29-juil 09-juil 15-juil 22-juil 29-juil 22-juil 08-juil 29-juil 09-juil 20-juil 09-juil 20-juil 20-juil 09-juil 15-juil 03-juil 05-juil 03-juil 14-juil 01-juil 02-juil

Autumn 27-sept 24-sept 09-sept 17-oct 24-sept 30-sept 24-sept 02-sept 03-oct 10-sept 02-sept 12-sept 22-sept 24-sept 18-sept 08-oct 24-sept 03-oct 05-sept 13-sept 11-sept 02-oct 27-sept 25-sept

Winter 01-jan 12-jan 07-jan 05-jan 12-jan 08-jan 05-jan 13-jan 13-jan 04-mar 13-jan 30-jan 12-jan 12-jan 11-jan 12-jan 12-jan 11-jan 11-jan 05-jan 07-fév 24-jan 23-jan

Spring 01-mai 29-avr 21-mai 29-avr 27-avr 19-avr 13-avr 02-avr 21-avr 13-avr 14-avr 03-mai 29-avr 30-avr 03-mai 29-avr 11-mar 16-avr 24-avr 03-avr 11-avr 07-avr 02-avr

Summer 20-juil 06-juil 15-juil 29-jui 06-juil 15-juil 01-juil 16-juil 26-juil 01-juil 03-juil 06-juil 06-juil 09-juil 06-juil 06-juil 29-jui 21-juil 08-juil 07-juil 16-juil 27-juil 01-juil

Autumn 29-sept 28-sept 28-sept 01-sept 28-sept 07-sept 26-sept 05-sept 24-sept 28-sept 05-sept 26-sept 28-sept 22-sept 13-déc 28-sept 12-sept 22-août 05-sept 15-sept 18-sept 10-sept 14-sept

Winter 12-jan 03-jan 22-déc 03-jan 17-jan 31-jan 10-jan 18-jan 31-jan 09-jan 14-jan 03-jan 15-jan 03-jan 05-jan 13-jan 16-jan 13-jan 04-jan 01-avr

Spring 18-avr 18-avr 06-avr 12-mar 18-avr 20-avr 22-avr 22-avr 12-avr 08-avr 22-avr 04-avr 06-mai 18-avr 05-mai 06-mai 18-avr 05-avr 02-mar 24-avr 08-avr 30-avr 06-juil 02-avr

Summer 07-juil 21-juil 20-juil 02-juil 21-juil 24-juil 11-juil 13-juil 06-juil 13-juil 13-juil 03-juil 21-juil 19-juil 21-juil 14-juil 22-jui 06-juil 07-juil 03-juil 10-sept 01-juil

Autumn 04-sept 18-sept 04-sept 04-sept 12-sept 20-sept 21-sept 22-sept 30-août 21-sept 21-sept 11-sept 04-sept 17-sept 27-sept 04-sept 27-sept 10-sept 01-sept 05-sept 16-jan 24-sept

Winter 07-jan 16-jan 06-jan 10-jan 16-jan 10-jan 03-jan 07-jan 07-jan 06-fév 07-jan 04-jan 17-jan 16-jan 20-jan 17-jan 16-jan 15-jan 16-jan 18-avr 08-jan 19-jan 11-avr 17-jan

Spring 07-mai 16-avr 16-avr 08-avr 16-avr 10-avr 19-avr 14-avr 12-avr 27-avr 14-avr 09-avr 07-avr 16-avr 25-avr 07-avr 16-avr 10-mai 30-avr 02-juil 18-avr 11-mai 20-juil 12-avr

Summer 11-jui 15-juil 23-juil 20-juil 15-juil 14-juil 03-juil 17-juil

2018

2019

2020

2021

2022

2015

2017

2016

Year Season
San SeveroMurciaTangier Oggaz MatrouhTobruk PadovaValencia

   59 



 

3.2  Classical statistic approach 

Based on the statistical concept, MA is used to 
forecast vegetation time series. It takes into accounts 

dependency between observations and residual error 
terms when a moving average model is used to the 
lagged observations (q). An MA model of order q 
MA(q), can be written in the form (see equation 1): 

 
(1) 

Where μ is the expectation of xt (usually assumed 
equal to zero), the θi terms are the weights applied to 
the current and prior values of a stochastic term in the 
time series, and θ0 =1. We assume that εt is a Gaussian 
white noise series with mean zero and variance σε

2. 

3.3  Machine learning approach 

Many different types of machine learning algorithms 
have been designed to conduct time series forecasting. 
In this part, one of the most used approaches in 
machine learning, namely LSTM is introduced.    

 

 

 

3.3.1  Long Short Term Memory Network (LSTM) 

Long Short Term Memory Network (LSTM) is a type 
of Recurrent Neural Network (RNN) with the purpose 

to architect temporal sequences that may solve 
prediction problems.  

Before implementing data into our LSTM model, it 
must follow a specific procedure that begins with data 
normalization because LSTM uses sigmoid and tanh 
that are sensitive to magnitude. After that the data is 
split into train and test sets which will be reshaped as 
X and y samples. Next step is to define our model with 
64 LSTM units in the hidden layer and an output layer 

that predicts a single numerical value (see figure 2).  

The mean squared error, or "mse" loss function is used 
to optimize the model after it has been fitted using the 
effective Adam form of stochastic gradient descent. 
Finally, the model is called to predict data. 

 

 

 

 

Biophysical index Sentinel 2 Landsat 8 MODIS

SR 1969 band8/band4 band5/band4 band2/band1

NDVI 1973 (Band8 - Band4)/(Band8 + Band4) (Band5 - Band4)/(Band5 + Band4) (Band2 - Band1)/(Band2 + Band1)

TVI 1975 sqrt(0.5 + NDVI) sqrt(0.5 + NDVI) sqrt(0.5 + NDVI)

DVI 1979 Band8 - Band4 Band5 - Band4 Band2 - Band1

CTVI 1984
(NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5)

(NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

(NDVI+0.5)/

(Abs(NDVI+0.5))*sqrt(Abs(NDVI+0.5))

WDVI 1989 band8 - γ band4,  γ=0.5 band5 - γ band4,  γ=1.06 band2 - γ band1,  γ=1.06

NDGI 1991 (band3-band4)/(band3+band4) (band3-band4)/(band3+band4) (band1-band4)/(band1+band4)

GEMI 1992

eta*(1-0.25*eta)-((band4-0.125)/(1-band4)), 

eta= (2(band8^2-band4^2)+1.5*band8+

0.5*band4)/(band8+band4+0.5)

 eta*(1-0.25*eta)-((band4-0.125)/(1-band4)), 

eta= (2(band5^2-band4^2)+1.5*band5+

0.5*band4)/(band5+band4+0.5)

eta*(1-0.25*eta)-((band1-0.125)/(1-band1)), 

eta= (2(band2^2-band1^2)+1.5*band2+

0.5*band1)/(band2+band1+0.5)

ARVI 1992
(band8 - band4 -y*(band4 - band2))/

(band8 + band4 -y*(band4 - band2)), y=1

(band5 - band4 -y*(band4 - band2))/

(band5 + band4 -y*(band4 - band2)), y=1

(band2 - band1 - y*(band1 - band3))/

(band2 + band1 - y*(band1 - band3)), y=1

GRVI 1993 band8/band3 band5/band3 band1/band4

EVI 1995
G*(Band8 - Band4)/(Band8 + C1*Band4 - 

C2*Band2 + L), G= 2.5  C1=6  C2=7.5  L=1

G*(Band5 - Band4)/(Band5 + C1*Band4 - 

C2*Band2 + L), G= 2.5  C1=6  C2=7.5  L=1

G*(Band2 - Band1)/(Band2 + C1*Band1 - 

C2*Band3 + L), G= 2.5  C1=6  C2=7.5  L=1

RDVI 1995 (band8 - band4)/sqrt(band8 + band4) (band5 - band4)/sqrt(band5 + band4)  (band2 - band1)/sqrt(band2 + band1)

GNDVI 1996 (Band8 - Band3)/(Band8 + Band3) (Band5 - Band3)/(Band5 + Band3) (Band2 - Band4)/(Band2 + Band4)

GARI 1996
(band8-(band3-γ(band2  - band4)))/

(band8+(band3-γ(band2  - band4))) , γ=1,7

(band5-(band3 -γ(band2-band4)))/

(band5+(band3 -γ(band2-band4))), γ=1,7

(band2-(band4-γ(band3-band1)))/

(band2+(band4-γ(band3-band1))), γ=1,7

MSR 1996 ((band8/band4) - 1)/(sqrt(band8/band4) + 1) ((band5/band4) - 1)/(sqrt(band5/band4) + 1) ((band2/band1) - 1)/sqrt((band2/band1) + 1)

PSRI 1999 (band4-Band2)/Band8 (band4-band2)/band5 (band1-band3)/band2

RGR 1999 band4/band3 band4/band3 band1/band4

SLAVI 2000 band8/(band4+band11) band5/(band4+band6) band2/(band1+band6)

AFRI1.6 2001 (Band8 - 0.66*band11)/(Band8 + 0.66*band11) (band5 - 0.66*band6)/(band5 + 0.66*band6) (band2 - 0.66*band6) / (band2 + 0.66*band6)

AFRI 2.1 2001 (band8 - 0.5*band12)/(band8+ 0.5*band12) (band5 - 0.5*band7)/(band5+ 0.5*band7) (band2 - 0.5*band7)/(band2+ 0.5*band7)

GLI 2001
(2*band3 - band4 - band2)/

(2*band3 + band4 + band2)

(2*band3 - band4 - band2)/

(2*band3 + band4 + band2)

(2*band4 - band1 - band3)/

(2*band4 + band1 + band3)

VARI 2002 (band3 - band4)/(band3 + band4 - band2) (band3 - band4)/(band3 + band4 - band2) (band4 - band1)/(band4 + band1 - band3)

GCI 2003 (band8/band3)-1 (Band5/Band3)-1 (Band2/Band4)-1

LAI 2003 3.16 EVI - 0.118 3.16 EVI - 0.118 3.16 EVI - 0.118

WDRVI 2004 (0.2*band8-band4)/(0.2*band8+band4) (0.2*band5-band4)/(0.2*band5+band4) (0.2*band2-band1)/(0.2*band2+band1)

NNIR 2006 band8/(band8+ band4 + band3) band5/(band5+ band4 + band3) band2/(band2+ band1 + band4)

CVI 2007 (band8*band4)/(band3^2) (Band5*Band4)/(Band3^2) (Band2*Band1)/(Band4^2)

EVI2 2008 2.5 * [(band8 - band4)/(band8 + 2.4 band4 + 1)] 2.5 * [(band5 - band4)/(band5 + 2.4 band4 + 1)] 2.5 * [(band2 - band1)/(band2 + 2.4 band1 + 1)]

CMRI 2018
[((band8-band4)/(band8+band4)) - 

((band3-band8)/(band3+band8))]

[((band5-band4)/(band5+band4)) - 

((band3-band5)/(band3+band5))]

[((band2-band1)/(band2+band1)) - 

((band4-band2)/(band4+band2))]

DNVI 2018 (band11-band12)^2/sqrt(band11+band12) (band6-band7)^2/sqrt(band6+band7) (band6-band7)^2/sqrt(band6+band7)

Table 2. Sentinel, Landsat, and MODIS vegetation biophysical indices algorithms 
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Figure 2. LSTM architecture 

3.3.2  Conv-LSTM 

This model is considered a fusion of two methods (i.e., 
convolutional neural network and LSTM) where each 
LSTM unit has the convolutional reading of the input 
embedded right in. This method’s pre-processing 

phase differ from the LSTM one, specifically in 
reshape step as subsequence parameter is introduced 
before building our model. This last contains a single 
layer with 64 filters and a two-dimensional kernel size 
(rows, columns). Since we are dealing with a one-
dimensional series, the kernel's fixed-row number is 
always 1. The output of the model must then be 
flattened before prediction. 

4.  RESULTS 

In this part, prediction accuracy of each method is 
presented and assessed using coefficient of 
determination (R2). 

4.1  Moving Average approach accuracies 

In comparison to Landsat, moving average approach 
generally demonstrates great accuracy for Sentinel and 
MODIS satellites. Regarding the regions, high 
accuracies are always observed in Italy Padova and 
San Severo regions. On the other hand, Spain Murcia 
has high accuracy in Sentinel only. The remaining 
region’s accuracy fluctuates differently from one index 
to another (see Figure 3).  

 

 

 

 

 

Figure 3. Moving Average (MA) model accuracy 

4.2 LSTM accuracies 

Globally, Sentinel satellite present the highest R2 
values compared to MODIS and Landsat. High 
accuracy is consistently seen in the regions of Padova 
and San Severo. The accuracy of the remaining region 

varies from one index to another (see Figure 4). 
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Figure 4. LSTM model accuracy 

 

4.3 Conv-LSTM model accuracy 

Given the high accuracy of Sentinel and MODIS, this 
technique has strong similarities to the MA model. 

 

Figure 5. Conv-LSTM model accuracy 

5 CONCLUSION  

In this research, we presented a versatile database 
containing more than 90 algorithms of 30 biophysical 
indices of three different satellites (i.e., MODIS, 
Landsat 8, and Sentinel 2), and then we applied 15 of 
these algorithms using a self-developed software on 
very high resolution satellite images of Tangier-

Morocco, Murcia-Spain, San Severo-Italy, Tobruk-
Libya, Oggaz-Algeria, Matrouh-Egypt, and Padova-
Italy in order to conduct an accuracy forecasting study, 
from 2015 to 2022 using three different forecasting 
approaches (i.e. ConvLSTM, Long Short Term 
Memory Network, and Moving Average). 
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ABSTRACT - Galicia forest areas suffer forest fire events at differing frequencies, intensities, and fire 

severities. Fire severity is directly related to the amount of biomass consumed, the rate of vegetation recovery 
and the risk of erosion. Consequently, a correct assessment of fire severity involves selecting the appropriate 
treatment and minimizing the restoration time of the affected area. In this sense, the objective of this article is to 
develop a methodology for the fire severity assessment, in forest fires occurred in Galicia in 2020. As input data, 
this study is based on the use of Sentinel-2 spectral indices, which are characterized by having spectral bands in 
the near-infrared (NIR) and short-wave infrared (SWIR) spectral regions, allowing a high distinction between 
different fire severity degrees. All possible combinations between Sentinel-2 bands applied to a spectral 
normalized difference index (SPI) were analysed, along with one of the most commonly used burn spectral 
indices in remote sensing: the relative differential Normalized Burn Ratio (RdNBR). In addition, in order to 

delete confusions between burned area and the presence of other land cover areas, the temporal differences 
between pre-fire and post-fire dates were obtained for each spectral index (dSPI). The results obtained were 
compared by field points classified as in Ruiz-Gallardo et al. (2004) study (null, low, moderate and high 
severity). Previously, the influence of pre-fire vegetation density on fire severity values was analysed. The 
separability index (SI) was also applied, based on averages and standard deviations, to select the most suitable 
band combinations. The final statistic results obtained, show that the combination of the Normalized Difference 
Vegetation Index (NDVI) and the modified Normalized Burn Ratio (NBR2), used in areas with mixed and full 
vegetation respectively, provides the best results in fire severity assessment (kappa statistic equal to 0.81). This 

work is carried out in the context of the project "Joint Strategy for the Protection and Recovery of ecosystems 
affected by wildfires" (EPyRIS). 

 
1  INTRODUCTION  

Forest fires, together with climate change, are 
considered one of the main disturbances causing, 
among other impacts, the destruction of vegetation in 
the Iberian Peninsula (Sousa, 1984). Specifically, fire 

severity (defined as how fire intensity affects 
ecosystems) is high correlated with vegetation 
recovery after fire and erosion risks (Keeley, 2009). 

Nowadays, satellite data play an important role in 
the knowledge about fire severity, as they provide 
information that allows mapping fire-damaged areas, 
which is essential to support fire control, assess 
environmental losses, define planning strategies and 

monitor vegetation restoration (Filipponi, 2019). 
Remote sensing tools have proven to be useful to 
accurately estimate fire-affected areas and their 
severity, to assist in the prevention, assessment and 
monitoring forest fires at global, regional and local 
scales (Chuvieco, 2009). However, remote sensing 
also has limitations such as the decrease in accuracy in 

areas with very heterogeneous vegetation surfaces, the 
solution to which is conditioned by fieldwork 
validations (Arellano et al., 2017; Soverel et al., 2010). 

In the context of the multiple remote sensing data 
that can be used, the multispectral instrument (MSI) 

on board the Sentinel-2 satellite constellation offers 
the possibility to obtain information at medium and 
high spatial resolution (10-20m) (ESA, 2015). In 
addition, the MSI sensor provides spectral information 
in several bands, with the near infrared (NIR) and 
shortwave infrared (SWIR) being the regions where 
there is the greatest difference between the different 
fire severity degrees (Fernández-Manso et al., 2016). 

MSI sensor also allows the possibility to obtain 
several spectral indices as a combination of the NIR, 
SWIR and red-edge spectral region, which is 
considered as a great descriptor of chlorophyll content 
(Korets et al., 2010; Curran et al., 1990; Fernández-
Manso et al., 2016; Navarro et al., 2017).On the basis 
of the variations between the NIR and SWIR regions, 
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all possible combinations between Sentinel-2 bands 
applied to a spectral normalized difference index (SPI) 
were analysed, along with one of the most remarkable 
spectral index specifically designed to analyse fire 
severity: the relative differential Normalized Burn 
Ratio (RdNBR) proposed by Miller & Thode (2007). 
Furthermore, in order to delete confusions between 

burned area and the presence of other land cover areas, 
it is recommended to use the temporal differences 
between pre-fire and post-fire dates for each spectral 
index (dSPI).  

Inside the project "Joint Strategy for the Protection 
and Restoration of Ecosystems affected by Forest 
Fires" (EPyRIS - SOE2/P5/E0811), the objective of 
this study is developing a methodology for the fire 

severity assessment, using Sentinel-2 spectral indices 
in forest fires occurred in Galicia in 2020. 

2  METHODOLOGY  

2.1 Study Area  

The work that is described was carried out in 9 
forest fires occurred in Galicia (Spain) in 2020, being 
all of them large fires (> 500 Ha). Those fires burned 
over 8000 Ha, classified mainly as Pinus pinaster Ait. 
(maritime pine) and Eucalyptus globulus Labill. (blue 
gum) stands. The understory vegetation was 
dominated by Pteridium aquilinum (L.) Kuhn and 

Ulex europaeus L. Figure 1 shows the map of all the 
forest fires occurred in Galicia 2020 and used in this 
study. 

 

 
Figure 1. Map of all the forest fires occurred in 
Galicia 2020 and used in this study. The reference 
coordinate system is WGS84 (EPSG: 4326). 

2.2 Sentinel-2 data 

Atmospherically corrected Sentinel-2 images 
(Kaufman & Sendra, 1988) were used, considering the 
date closest (cloud-free) to the extinction of the fire. 

Two images per fire (pre- and post-fire) were 
downloaded and pre-processed: cropping (fire area), 
resampling (highest spatial resolution, 10 m) and 

cloud correction (using the Scene Classification map 
(SCL) mask, implicit in the download folder) (Gascón 
et al., 2017). All areas not corresponding to forest land 
(agricultural land, water areas, rocks...) were also 
removed, using the Land Cover S2GLC, obtained 
from Sentinel-2 images of 2017 (more than 15000 
images and an overall accuracy of 86% using 52000 

validation samples distributed all over Europe) and 
whose spatial resolution is 10 m (Malinowski et al., 
2020). 

Majority of the most commonly used spectral 
indices in forest fires, employs a normalized difference 
algorithm (i.e. the subtraction of two bands reflectivity 
divided by the sum of those same bands reflectivity), 
being the only difference, the combination of bands 

used (Chuvieco et al., 2006; Fernández-Manso et al., 
2016). For this reason, all possible combinations of 
normalized difference spectral indices (SPI) were 
calculated from the Sentinel-2 bands in order to obtain 
the combination that best assess fire severity 
(Delegido et al., 2018). In addition, for each SPI and 
considering forest fires as a change detection case, the 
temporal differences between pre-fire and post-fire 

dates were obtained (Equation 1). 

 
(1) 

Were Bx and By are all the different pair of 
Sentinel-2 bands used in this study. Furthermore, one 
of the most widely used spectral index in forest fires 
field, the Relative difference Normalized Burn Ratio 
(RdNBR) proposed by Miller & Thode (2007), was 

obtained in order to exclude the amount of pre-fire 
vegetation (Equation 2).  

 

(2) 

Were B8 and B12 are the NIR and SWIR2 Sentinel-2 
bands, respectively; NBR is the Normalized Burn 
Ratio and dNBR is the differenced Normalized Burn 
Ratio. 

2.3 Field data 

Fire severity validation was realized by visual 
analysis based on Ruiz-Gallardo et al., 2004 study, 
which assess the fire severity on the basis of burned 

vegetation percentages. Table 1 shows the percentage 
of burned vegetation for each field fire severity 
degree. A total of 158 field plots were measured, 
corresponding 25 to null, 8 to low, 46 to moderate and 
87 to high severity, respectively. 
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Table 1. Ruiz-Gallardo et al. (2004) fire severity 
classification. 

Fire 

severity 

degree 

Percentage of burn vegetation 

Null 
severity 

Global vegetation ≈ 0 % 

Low 
0 % ≤ Global vegetation ≤ 50 % 

0 % ≤ Tree canopy ≤ 30 % 

Moderate 
50 % ≤ Global vegetation ≤ 90 % 

30 % ≤ Tree canopy ≤ 75 % 

High Global vegetation ≥ 90 % 

2.4 Statistical analysis  

Fire severity assessment to obtain the most 
suitable dSPI index is based on a modification of the 
Separability Index (SIw) algorithm (Equation 3) adding 
different weights depending on the fire severity degree 
(the higher fire severity, the higher weight) (Tran et 
al., 2018).  

 (3) 

SIUB-L, SIL-M and SIM-H are the separability index 
between unburned and low severity, low and moderate 
severity and moderate and high severity, respectively. 
Due to all SIw values obtained were, in all the cases, 
very low (less than one) and since there are studies 
that relate fire severity to vegetation type (Fornacca et 

al., 2018), forest fire was divided according to pre-fire 
vegetation. This division was carried out based on 
Normalized Difference Vegetation Index (NDVI, 
Equation 4) (Rouse et al., 1973) and using the 
classification proposed by Sobrino et al., 2008 study.  

 

 
(4) 

B4 band correspond to Red Sentinel-2 band. 
NDVI pixels above 0.5 were classified as full 
vegetation and pixels below 0.5 as mixed vegetation. 
Despite the existence of a third class corresponding to 
bare soil, it was not considered. 

In this context, several spectral indices obtained 
from the combination of post-fire bands reached SIw 
values higher than 1. On the one hand, the 
combination of B4 and B8 post-fire bands, which is 
equal to NDVI algorithm (Equation 4), was selected as 
the best predictor in mixed vegetation areas (SIw = 
1.62). On the other hand, the combination of the post-

fire bands B8A and B12 shown in Equation 5, which is 
similar than NBR algorithm but using the B8A red-
edge band, was selected as the best predictor in full 
vegetation areas (SIw = 1.12).  

 
(4) 

Once the spectral indices were selected as the best 
predictors, approximately 40% of the field plots were 

used to extract the mean and standard deviation 
statistics. The remaining 60% of field points were used 
for validation (using the confusion matrix and the 
kappa statistic) (Congalton, 1991). Table 2, shows the 
thresholds (low, moderate and high severity) as a 
combination of µ and σ. The null severity is validated 
according to if the field plots are inside or outside the 
forest fire. 

Table 2. Thresholds of low, moderate and high severity 
as a combination of µ and σ. 

 Low Moderate High 

RdNBR X < 0.60 0,60 ≤ X < 0.95 X ≥ 0,95 

NDVI  X > 0.45 0,45 ≥ X > 0,15 X ≤ 0,15 

NBR2 X > -0.15 -0,15 ≥ X > -0,30 X ≤ -0,30 

3 RESULTS AND DISCUSSION 

Figure 2a, 2b and 2c show the fire severity results 
obtained using, on the one hand, the RdNBR index 
and, on the other hand, the combination of NDVI and 
NBR2 spectral indices. Figure 3a and 3b, show the 
final maps of fire severity classified using thresholds 
obtained in Table 2 using RdNBR index and the 
combination of NDVI and NBR2 spectral indices. The 
forest fire represented is Lobios forest fire (2062 Ha), 
the largest analysed in this study. 

NDVI and NBR2 spectral indices combination, 
represents the most accurate results (accuracy = 0.85 
and kappa = 0.80) against RdNBR index (accuracy = 

0.82 and kappa = 0.72). The value of kappa obtained 
(0.84) is considered such as an almost perfect 
agreement by Landis & Koch (1977) classification, 
and it is similar to Quintano et al. (2018) study (kappa 
equal to 0.80).  
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Figure 2. (a) Fire severity results obtained using the 
RdNBR index based on omission errors and 
commission errors. (b) Fire severity results obtained 
using the combination of NDVI and NBR2 spectral 
indices and based on omission errors and commission 

errors. (c) Comparative of RdNBR and the 
combination of NDVI and NBR2 spectral indices, 
based on accuracy kappa index. 
 

In terms of omission and commission errors, 
NDVI and NBR2 combination improves the RdNBR 
result, except in null and low severity degrees, which 
value is equal (5 and 50 %, respectively). The fire 
severity omission errors results obtained are higher 
than Arellano et al. (2017) study in low and moderate 
severity (omission = 20% and 13,5%, commission = 

20% and 10,3%, respectively) and lower in high 
severity (omission = 8%, commission = 23,3%, 
respectively). In this sense, it is important to note that 
this study assigns more importance to high severity, as 
it considers the strong relationship between high 
severity and erosion risks (forest structure completely 
damaged leads to high risk of erosion).  

 

 
Figure 3. (a) Fire severity map obtained using the 

RdNBR index and classified using thresholds obtained 
in Table 2. (b) Fire severity map obtained using the 
combination of NDVI and NBR2 spectral indices and 
classified using thresholds obtained in Table 2. The 
forest fire represented is Lobios forest fire (2062 Ha), 
the largest analysed in this study. The reference 
coordinate system is WGS84 (EPSG: 4326). 

4 CONCLUSIONS 

This study presents a methodology for the 
estimation of fire severity. Statistical tests were 
performed using one of the most commonly used burn 

spectral indices in remote sensing: the relative 
differential Normalized Burn Ratio (RdNBR) and all 
possible combinations of normalized differential 
spectral indices from Sentinel-2 bands.  

a 

b 

c 

a 
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The combination of the NDVI and NBR2 indices 
(SPI) provides more accurate results than the RdNBR 
index. Low severity was the worst classified class 
(50% omission error). It is demonstrated that the 
combinations between red, near infrared (NIR) and 
short-wave infrared (SWIR) bands are suitable for 
differentiating between fire severity degrees.  
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ABSTRACT - In  this  work  we  monitor  within-field  barley  yield  based  on  Earth  Observation  (EO)  data  from 
Sentinel-2  and  Sentinel-1.  Both  satellites’  data  has  been  preprocessed  granting  Sentinel-2  surface  reflectance 
and Sentinel-1 γ0 backscatter coefficients and noise free H-A-α decomposition. Yield data has been measured by
harvest machines during 2020 and 2021 seasons, providing dry yield roughly every 7m, over irregular polygons. 
Thus,  field  data  has  also  been  preprocessed  to  achieve  spatial  consistency  and  reduce  measuring  software 
errors. Training  and  validation  has followed  a structure of  k-fold  cross  validation.  The  main  objective  of  this 
work is exploring the integration of C-band SAR data to monitor barley yield. On one hand, Sentinel-1 data can 
increase  Sentinel-2  temporal  resolution  and  assure  that  even  in  cloudy  conditions  information  on  crop 
development  can  be  retrieved.  But  on  the  other  side,  in  cloud  free  conditions  each  spectral  band  and 
polarization  is  analyzed  to define  the combination  that is  best correlated  with the  final  yield  maps.  Therefore, 
linear regression and machine learning algorithms were tested using different spectral bands and polarizations 
from  both  Sentinel  satellites. An  optimal  date  for  the  final  model  has  been selected  attending  to  performance

2metrics such as R and RMSE; creating predicted within-field yield maps and tracking their uncertainties. 

 
1  INTRODUCTION  

According to United Nations’ Department of 
Economic and Social Affairs, by the end of this 
decade, global population will have risen to 8 plus 
thousands of million people. This manifests the 
necessity of increasing food production in order to 

feed our rising population. The previous, in the context 
of a changing climate and energy vector scarcity, 
highlights the importance of ensuring and monitoring 
essential resources such as crops (and specifically 
winter cereals) to maintain and improve food 
production. 

The price of barley, as with any other food, can 
fluctuate significantly depending on production. 
Consequently, proper crop management and 

monitoring are required to predict crop production in 
order to make decisions to avoid market speculation 
and guarantee fair prices. 

For all these reasons, and in line with similar 
studies (Becker-Reshef et al., 2019; Skakun et al., 
2021), this paper addresses the development of 

empirical models for barley yield prediction based on 
in situ data from collected in different fields in the 
province of Valladolid, Spain. 

2  DATA  

The data used for training and validating the models 
is, on the Earth Observation (EO) part, surface 
reflectance measured by Sentinel-2 at 10 m and 20 m 
spatial resolution, Sentinel-1 γ0 backscatter 
coefficients and noise free H-A-α decomposition at 10 

m spatial resolution and ERA5/ECMWF daily 
precipitation; and on the in situ data part, the within-
field yield maps of the 2020 and 2021 seasons. 

The data available from Sentinel-2 is limited and 
corresponds mostly to the months of May and June 
due to the high cloud cover from January to April in 
the study area. The raw yield maps obtained by the 
harvester (figure 1a) are made up of irregular 

rectangles of approximately 7 x 3 m2 that show 
extreme yield values, i.e. within an irrigation pivot, 
contiguous irrigation pixels that differ by several 
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tonnes of yield or yields that are far in excess of those 
expected for a crop of this class, due to faults in the 
measurement software. In order to be able to work 
with these products we require a pre-processing, 
which consists of spatial regularization of the data to a 
regular grid of 10 x 10 m2 squares (figure 1b), the 
application of an average filter to smooth out the 

anomalies in yield values discussed above (figure 1c) 
and finally an erosion of the pixels at the edge of the 
map in order to remove non-representative values that 
may be affected by the contribution of bare soil (figure 
1d) 

 

Figure 1. Example of yield map processing pipeline. 

The fields of study are located in the surroundings 
of Medina del Campo, a small village in the province 
of Valladolid, and their main properties are shown in 
the following table. 

Table 1. Distribution and area of the in situ data 
across the 2020 and 2021 seasons. 

Season 
Number of 

Fields 
Area (ha) 

2020 9 167.43 

2021 24 174.89 

3 THEORETICAL BACKGROUND 

Two types of algorithms have been selected to build 
the empirical models for predicting performance: 
regularised Ridge regressions and random forest 
regressions. It is important to emphasise that the 
models created by random forest are intended to 
narrow down the best metrics to be achieved, since, 

due to their low interpretability, it is more complex to 
carry out an analysis of the influence of the different 
bands. The training and validation of the models will 
follow a leave-one-out stratified cross-validation 
structure where each iteration, the model will be 
trained with all the fields except one, which will be 
used to validate the model. In order to choose the 
optimal model features, Pearson’s correlation 

coefficient r2 of the features with the final yield will be 
analysed. 

The optimal model will be the one that has the 
highest R2 coefficient of determination (equation 1) 
and the smallest root mean square error (equation 2): 
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4 METHODOLOGY 

First, the EO data has been preprocessed. For the case 
of Sentinel-2 Bottom-Of-Atmosphere (BOA) 
corrected reflectance products have been obtained and 
clipped to our area of interest using LaSRC (Vermote 
et al., 2016). For Sentinel-1, both SLC and GRD 
products have been processed performing different 
corrections such as orthorectification, radiometric 
calibration, thermal noise removal, etc. (Filipponi et 

al., 2019; Mascolo et al., 2021). Additionaly, rainy 
dates where daily precipitation is above 10 mm have 
been left outside of the study (Tamm et al., 2016).  

Figure 2. Methodology overview. 

The yield maps have been processed to obtain a 
regularised grid at 10 m without extreme yield values. 
The correlation coefficient of the different spectral 
bands along the time series has been calculated, 
revealing the most relevant features for the model. 
With the optimal parameters, the models have been 
trained and validated with both spatial cross validation 

(each season individually) and temporal cross 
validation (one season trains the model and it is 
validated in the other) for each date of the time series 
using optical, SAR and optical-SAR features.  
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Finally, the R2 and the RMSE have been analysed 
to discern which date has the highest prediction 
accuracy. General overview of the methodology can be 
seen in the figure below: 

 

5 RESULTS 
 

By plotting the r2 time series of all the different optical 
and SAR parameters, it has been found that from of all 
features, the bands associated with the SWIR, red and 
red-edge show the greatest correlation of all Sentinel-2 
features. In the case of Sentinel-1, the maximum 
correlation corresponds to VV and VH polarizations 
and to Anisotropy as well. With this information, we 
have created two models labelled initial and trimmed 

as can be seen in the figures below. For Sentinel-2, the 
initial model is formed by bands 4, 5, 8A, 11 and 12; 
the trimmed model reduces the number of bands to 
three, being 4, 8A and 11. As can be seen in both 
figure 3 and 4, almost halving the number of bands for 
the Sentinel-2 model only affects correlation by a 
negligible factor. For Sentinel-1, the initial model was 
formed with all the available features and then the 

trimmed model has been elaborated using only VV,  
VH and Anisotropy. In the same way as in the 
previous optical case, the correlation between the 
initial and trimmed SAR models does not show any 
significant variation (figures 5 and 6). 

Figure 3. Optical parameters correlation with yield 
for the 2020 season. 

 

Figure 4. Optical parameters correlation with yield 
for the 2021 season. 

 
Figure 5. SAR parameters correlation with yield for 
the 2020 season. 

 
Figure 6. SAR parameters correlation with yield for 
the 2021 season. 
 

With the optimal spectral features selected, three 
models have been trained and validating using only 
optical features, only SAR features and mixing optical 
and SAR features in a 10 day window. Analysing the 
time series for the RMSE of the spatial cross validation 
it can be seen that mixing optical and SAR features 
consistently yields a lower RMSE throughout both 
seasons (figures 7 and 8), reaching the minimum value 

in 25th of June for 2020 and 6th of April for 2021. As 
may be seen in figures 9 and 10, mixing optimal 
optical and SAR features when available can increase 
the coefficient of determination of the model thus 
making it more robust. 

 
Figure 7. RMSE time series with spatial cross 
validation for the 2020 season. 
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Figure 8. RMSE time series with spatial cross 
validation for the 2021 season. 

 
Figure 9. Observed yield vs predicted yield using only 
optical data for the 06-25-2020. 

 
Figure 10. Observed yield vs predicted yield using 
optical and SAR data for the 06-25-2020. 
 
When performing the temporal cross validation, 

metrics are not conclusive (figures 11 and 12). The 
main reason for this is the lack of cloud-free Sentinel-
2 data from February to May in 2021. The lack of 
overlap between seasons makes impossible performing 
a temporal cross validation in a crucial period of time 
for the crop development and growth. In this case, 
although Sentinel-1 may not provide information as 
accurate as its optical counterpart, it can fill the gaps 
in these crucial dates and still provide some kind of 

insight about the crop state. 

 
Figure 11. RMSE time series with temporal cross 
validation for the 2020 season. 

 
Figure 12. RMSE time series with temporal cross 
validation for the 2021 season.  
 

6 DISCUSSION AND CONCLUSIONS 
 
Normally yield models are based on the analysis of 
NDVI or DVI indices. In this work, a more basic 
approach has been chosen, relating spectral 
information directly to yield. SWIR, and in particular 
band 11 of Sentinel-2, is particularly useful for 
monitoring leaf water content. Due to the 

heterogeneous nature of the agricultural practices in 
the fields of study, the highest correlation of the SWIR 
could be indicative of the importance of the presence 
of water and irrigation in yield improvement. As stated 
previously for the SAR parameters, VV, VH and 
Anisotropy but the interpretation of the correlation of 
the SAR features is not as straightforward and 
consequently more work needs to be done in this 
particular field of study. Despite the limited dataset, 

this simple approach has provided information about 
which optical and SAR features best correlate with 
within-filed yield and it has also shown the potential 
that SAR data has to complement optical features, 
reaching RMSEs below 1000 kg/ha when this synergy 
is exploited. The immediate application and 
extrapolation of this model to other fields in other 
seasons is not trivial. Due to the amount of data 

available at the moment as well as the location of the 
data i.e. the fields on which the model has been trained 
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are in the same town; the model is potentially sensitive 
to longitudinal and latitudinal variation. It is expected 
to be able to obtain data from future campaigns at 
different locations in order to develop a more robust  
model applicable to fields with no yield information. 
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ABSTRACT - Rice is one of the major commodities traded in the international food market and basic food in 
the diet of more than half of the world’s population, especially in developing countries. Rice-producing systems 
are critical for ensuring food security, reducing poverty and improving livelihoods. Accurate and timely crop 
yield forecasts are necessary for making viable agricultural investments, developing proper agricultural 
planning, increasing market efficiency and stability, as well as managing food shortages. On the other hand, 
fertilizers and pesticides are routinely used in rice cultivation to maintain optimal yield and to protect plants 

from diseases. However, the overuse of them, has adverse effects on the environment and human health, that has 
led to the regulation of the use on nitrogen in agriculture to minimize its impact. The main objective is to obtain 
prediction models based on linear regression and machine-learning that correlate the spectral bands of 
Sentinel-2 with the final yield data. In this work, rice yield at field scale from 2017 to 2020 have been used, 
covering an area of 78 ha/year around the Albufera de Valencia. Results show that linear regression models 
provide a RMSE of 0.29 t/ha (6.4%) in Bomba and 0.47 t/ha (5.2%) in JSendra about three months before 
harvest. The second objective is to analyse rice crops with different nitrogen level treatments using Sentinel-2 
and drone data. This is conducted over an experimental field close to the Albufera. Preliminary results show 

thar NIR band can monitor the rice development over different nitrogen management. 

Keywords: remote sensing, Sentinel-2, rice, yield, fertilization 

 
1.  INTRODUCTION 

Globally, the harvested area of rice is second only 
to wheat. Considering its caloric contribution, rice is 
the cereal that provides the most calories per hectare 
and is the most consumed cereal globally. Rice 
production is the main source of income for some 100 
million households in Asia and Africa. All this leads to 

the need for rice yield and production forecasting, as it 
plays a key role in world markets, impacting policy 
and decision making, and allowing more efficient and 
sustainable crop. Precision agriculture is defined as the 
management of crops based on the knowledge of the 
spatial and temporal variability in an agricultural 
holding, to improve the economic return and minimize 
the environmental impact. Remote sensing data 

provides timely, objective and accurate information 
that is critical for precision agriculture applications. 
Many methods have been developed to estimate crop 

yields using remotely sensed data (Weiss et al., 2020). 
The most used are those based on empirical 
relationships between field yields and spectral data 
during a given phenological period (Becker-Reshef et 
al., 2018). In rice crop, there are many studies that 
relate spectral information to the field yield (Franch et 
al., 2021) or to its nutritional status (Zhang et al., 

2020). However, so far, high spatial resolution satellite 
data have not been used to forecast rice yield. First, we 
develop a rice yield model at field scale based on yield 
measurements over 78 ha/year around the Albufera in 
Valencia (Spain) from 2017 to 2020 seasons. The 
dataset covers the two main varieties, that is JSendra 
and Bomba, and provides average yields at field scale. 
Training and validation follow a structure of k-folds 

cross validation. The main objective is to obtain 
prediction models based on linear regression and 
machine-learning that correlate the spectral bands of 
Sentinel-2 with the final yield data. 
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Fertilizers are routinely used in rice cultivation to 
maintain optimal yield. The overuse of fertilizers has 
adverse effects on the environment and human health. 
According to the Sustainable Development Goals 
approved by the United Nations Conference on 
environmental, political and economic challenges for 
the coming years, agricultural crop production must 

evolve towards efficient, profitable and sustainable 
systems.  Fertilization management in modern 
agriculture aims to supply just the fertilizer needed to 
maximize yields while avoiding their excesses to 
ensure environmental sustainability. Previous works 
have shown that the growth of the rice crops as well as 
the nitrogen content can be inferred based on the 
spectral reflectance from EO sensors. For instance, Cai 

et al. (2019) showed that the Normalized Difference 
Vegetation Index (NDVI) or the Green NDVI (GDVI) 
can be used to monitor the nitrogen content of rice 
crops. In fact, other studies show how remote sensing 
data can be used to monitor the nitrogen deficit in rice 
(Bacenetti et al., 2020; Moreno-García et al., 2018). 
The second objective of this work is to analyse rice 
crops with different nitrogen level treatments using 

Sentinel-2 and drone data. This is conducted over an 
experimental field close to the Albufera that was split 
into three different areas characterized by different 
nitrogen treatments. 

The implementation of remote sensing 
technologies in rice farming has evident advantages in 
monitoring rice growth, soil fertility evaluation and 
yield estimation, among others.  

2.  MATERIAL  

The study is developed over rice plots located 
around the Albufera Natural Park in Valencia, eastern 

Spain (Figure 1). We selected the two main rice 
varieties in the region, JSendra and Bomba, and a 
yield database is available for the years 2017-2020. 
Table 1 collects the number of plots, total area and 
average yield of the studied plots for each year. On the 
other hand, we use Sentinel-2 images (tile 31SBD) 
from January 2017 to December 2020 every 5 days. 
Spectral bands with 10 m and 20 m spatial resolution 

(B02, B03, B04, B05, B05, B06, B07, B08, B11 and 
B12) are considered for this study.  

To develop the nitrogen study, we have an 
experimental JSendra rice field close to the Albufera 
with three different nitrogen treatments that are 130.9 
kgN/ha, 176.2 kgN/ha and 243.1 kgN/ha. Field data on 
the within-field yield was collected by harvesting 
machines (Figure 2A). Finally, we use Sentinel-2 
images (tile 31SBD) for the year 2021, and a 

multispectral drone with RGB-NIR bands (Figure 2B). 

 

Figure 1. Location of the studied rice plots. 

 

Table 1. Rice plots database. 

  2017 2018 2019 2020 

JSendra 

Plots 16 17 17 28 

Area (ha) 33.84 38.94 42.81 48.57 

Yield (t/ha) 8.0±0.7 8.4±0.8 8.8±1.4 8.6±0.9 

Bomba 

Plots 15 16 27 17 

Area (ha) 24.71 32.77 50.62 38.46 

Yield (t/ha) 4.9±1.2 4.1±0.4 4.7±0.5 3.8±0.7 

 
The Sentinel-2 satellite images have been 

previously downloaded from SciHub Copernicus and 
processed to perform the atmospheric correction using 

the Land Surface Reflectance Code (LaSRC) 
algorithm (Vermote et al., 2016) obtaining the surface 
reflectance values. 

           
A                                                     B 

Figure 2. (A) Experimental JSendra rice within-field yield. 

(B) Drone image, NIR band. 
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Figure 3. Rice yield study methodology flowchart. 

3. METHODOLOGY 

3.1. Rice yield study  

From the data collected in Table 1 and the satellite 
images, the mean surface reflectance (and standard 

deviation) per plot for each spectral band is obtained. 
Seventy percent of the plots for each variety are 
randomly selected for the model training dataset and 
the remaining 30% for validation, applying three 
iterations in the random selection. This iterative 
process is applied to the four forecasting models 
developed. Figure 3 shows a flowchart of the 
methodology used to develop the rice yield study. 

3.1.1. Method 1 

This method studies the evolution of the DVI 
(Difference Vegetation Index, equation 1) for each plot 

by fitting it to a Gaussian curve. With this analysis, the 
yield is directly correlated with the amplitude of the 
curve. This method 1 uses a regression model that 
expresses yield per plot (i) as a function of two 
parameters of the curve: Gaussian amplitude (a) 
(equation 2) and Gaussian amplitude and width (w) 
together (equation 3). 

DVI = ρNIR - ρRED
  (1) 

Yieldi = A·ai + B (2) 

Yieldi = A·ai + B·wi + C (3) 

3.1.2. Methods 2, 3 and 4 

To develop the following three yield forecasting 
models, we first perform an analysis of the temporal 
evolution by date of the correlation coefficient 
obtained by directly correlating the surface reflectance 

values of each band on each date of data acquisition 

with the yield considering all the years together. As we 

do not have the images at the same dates in each year 
and to minimize the possible variation in the 
phenological evolution of each year, we averaged the 
images every 10 days from the day of the year 150 to 
280. Figures 4 and 5 show the evolution of the 
coefficient of determination of JSendra and Bomba 
rice fields. In the case of JSendra rice (Figure 4), two 
times can be distinguished, separated by a minimum 

correlation. The first one presents a relative maximum 
on July 9, then the correlation decreases until reaching 
a minimum on August 18 and finally increases again 
until reaching the absolute maximum correlation on 
September 7. Similarly, for Bomba rice (Figure 5), two 
phases are observed. A relative maximum is observed 
on July 9 (it should be noted that it coincides with the 
same date as JSendra), the correlation minimum 
occurs on July 29 and the absolute maximum is 

reached on August 8. In both cases, the dates of 
maximum correlation correspond to different 
phenological stages, which will allow us to know the 
stage in which the prediction is more accurate.  

The second forecasting method consists of a linear 
regression model as a combination of the spectral 
bands with 10 m spatial resolution for the two selected 
days with maximum correlation (doy) in both rice 

varieties (equation 4), the third method is a regression 
model as a linear combination of all the bands in the 
two dates of maximum correlation for both rice 
varieties (equation 5), and finally we applied the 
machine-learning technique Random Forest, which 
consists of generating multiple subsets of data from 
the training set, building multiple models using 
multiple decision trees where each one of them is 

trained with a subset of data and finally combining by 
averaging the predictions of each tree. Thus, this 
algorithm builds a prediction model based on the 
relative importance of each spectral band to the 
independent variable (yield). 
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Yieldi,doy = A·B02i,doy+B·B03i,doy+C·B04i,doy+ 
D·B08i,doy+E 

(4) 

Yieldi,doy = A·B02i,doy+B·B03i,doy+C·B04i,doy+ 
D·B05i,doy+E·B06i,doy+F·B07i,doy+G·B08i,doy 

H·B11i,doy+I·B12i,doy+J 

(5) 

 
 
3.2. Rice nitrogen content study  

First, we analyse surface reflectance average 
values for each Sentinel-2 spectral band every day, 
comparing the three regions with different nitrogen 

treatment. Figure 6A shows the spectral curve of the 
three regions for July 9.  

In addition, we analyse for each Sentinel-2 band 
and each day the correlation between the pixel-level 
spectral band and final yield for the three different 
nitrogen treatment regions (Figure 6B). 

3.3. Evaluation 

We evaluate the yield forecasting models with a 
standard set of metrics which are the coefficient of 
determination r2 (equation 6), the Root Mean Square 
Error RMSE (equation 7) and the Relative Root Mean 
Square Error RRMSE (equation 8). 
 
 

 
Figure 4. Timeseries of the determination coefficient (yield-band) for JSendra rice. 

 

 
Figure 5. Timeseries of the determination coefficient (yield-band) for Bomba rice. 
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(6) 

 

 

(7) 

 

 

(8) 

 

 

4. RESULTS 

Each prediction model is developed with 70% of 
the data reserved for training, obtaining different yield 
estimation equations (one for each model). Table 2 
shows the evaluation metrics (equations 6, 7 and 8), 
resulting from the application of the yield estimation 
equation of each model to 30% of the data reserved for 

validation (test data).  
From Table 2, we can see that for the two rice 

varieties analysed, the estimation model based on 
amplitude and Gaussian width slightly improves the 
model that only uses amplitude; however, it does not 
reach 1% in the improvement of the relative RMSE, so 
it is not particularly interesting. 

Table 2. Performance metrics for each forecasting model for JSendra and Bomba rice. 

 
BOMBA JSENDRA 

 
r2 

(Eq.6) 

RMSE 

(t/ha) (Eq.7) 

RRMSE (%) 

(Eq.8) 

r2 

(Eq.6) 

RMSE 

(t/ha) (Eq.7) 

RRMSE (%) 

(Eq.8) 

MÉTODO 

1 

Eq.2 0,68 0,35 7,74 0,64 0,45 5,24 Eq.2 

Eq.3 0,64 0,34 7,44 0,67 0,38 4,40 Eq.3 

MÉTODO 

2 

Eq.4, 

Jul 9 
0,84 0,32 7,11 0,46 0,44 5,19 Eq.4, 

Jul 9 

Eq.4, 

Aug 8 
0,75 0,27 6,19 0,54 0,43 5,11 Eq.4, 

Sep 7 

MÉTODO 

3 

Eq.5, 

Jul 9 
0,77 0,29 6,39 0,51 0,47 5,52 Eq.5, 

Jul 9 

Eq.5, 

Aug 8 
0,79 0,27 6,27 0,56 0,58 6,68 Eq.5, 

Sep 7 

MÉTODO 

4 

Jul 9 0,52 0,34 7,71 0,55 0,49 5,86 Jul 9 

Aug 8 0,80 0,28 6,28 0,79 0,39 4,56 Sep 7 

 

  

A                                                                                      B 
Figure 6. (A) Surface reflectance average values for each Sentinel-2 band for doy 190. 

(B) Correlation of the pixel-level NIR band and final yield for doy 255. 

   78 



As for methods 2 and 3, the errors are very similar 
for both days and both methods, obtaining a difference 
in error around 1%, so the models on July 9 allow us 
to make early predictions with good accuracy. Finally, 
we see that the Random Forest models do not improve 
the previous methods and are not very useful. 

Figure 6A shows that NIR band can monitor the 

rice development over different nitrogen management 
and therefore the more nitrogen we have, the surface 
reflectance in the near infrared band will be higher. 
Finally, Figure 6B shows that when applying a really 
high nitrogen soil content, the final yield is 
comparable to the medium nitrogen content, which 
indicates that we should avoid overfertilization. 

5. CONCLUSIONS 

In this work, four rice crop yield forecasting 
models of JSendra and Bomba rice varieties have been 
developed and evaluated using high spatial resolution 

Sentinel-2 data. The results show that it is possible to 
provide field-level rice yield estimations with an 
RMSE of 0.47 t/ha (5.2% error) for the JSendra rice 
variety and with an RMSE of 0.29 t/ha (6.4% error) 
for Bomba on July 9, about three months before 
harvest, thus satisfying the important premise of 
precision agriculture about providing early estimations 
that allow farmers to improve crop interventions. 

These results show us that the management of rice 
fields in the first weeks is determinant in the final 
yield. On the other hand, the study of nitrogen in rice 
has shown that overfertilization does not help to 
increase yields and should be avoided. 

As a possible extension, it would be interesting to 
perform a relationship analysis between spectral data 
and the nitrogen content of rice fertilizers, study how 

it influences final yield and develop prediction models 
that include both variables (Huang et al., 2015), and 
finally incorporate meteorological data to improve the 
accuracy of prediction models (Sarma et al., 2008). All 
this will allow for more efficient, profitable and 
environmentally sustainable rice management 
practices. 
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ABSTRACT - This work aims to perform an analysis of the surface urban heat island effect (SUHI) during the 
year 2021 in all major cities in Spain, in order to obtain an estimate of the increase in the surface temperature of 
each city, with respect to its surrounding green areas. Land Surface Temperature (LST) was used to measure the 
temperature difference, which is retrieved from the MYD21 and MOD21 products of the Aqua and Terra satellite 
of MODIS, respectively. This product was chosen for its daily temporal resolution for the areas under study and 
for using the Temperature Emissivity Separation (TES) algorithm for LST estimation. 

It is known that the spatial resolution of 1 km per pixel is quite low for the study being pursued, but the 

proposed approach aims to apply more complex statistical methods based on Deep Learning algorithms to 
classify and differentiate urban areas from their surrounding green areas. State-of-the-art models based on 
natural language processing (NLP), more specifically the 'Transformers' model will be used for classification. 
This model uses attention mechanisms to search for contextual relationships between image pixels, decreasing 
the computational and temporal cost and achieving accuracies in the range of 90% to 95% in classification or 
segmentation of satellite images. 

 
1 INTRODUCTION 

The use of predictive analysis algorithms on remotely 
sensed imagery is a field of exploration that has made 
great advances either in the field of pixel-based image 

classification or image segmentation for soil 
classification (He, 2021). This work is carried out 
using Deep Learning and NLP (Natural Language 
Processing) algorithms based on "attention" (Vaswani, 
2017) in order to obtain an approximation of a global 
predictive model to classify urban areas and their 
surrounding rural areas to automatically determine the 
urban heat island effect (SUHI). 

 According to (Sobrino, 2013) and (Sobrino 2012) 
the calculation of the SUHI is determined by the 
temperature difference between urban areas and their 

surrounding rural areas, since this task becomes 
complex when trying to classify such areas in a large 
number of cities or globally, due to the different 
characteristics of the cities, it is more than necessary to 
find a methodology that automates this process. 

Therefore, this work focuses on finding an 
approach to a global model that is capable of 
automatically classifying urban areas from the 
surrounding rural areas, in order to determine and 
analyse the urban heat island effect not only locally 

but also globally. The first phase focuses on obtaining 

data based on geophysical variables from the MODIS 
(moderate resolution imaging spectroradiometer) 
remote sensor, which are used as input data sets and 
predictive characteristics. For this work we use the 
LST (Land Surface Temperature) and LSE (Land 
Surface Emissivity) bands 29, 31, 32 obtained by 
using the TES algorithm (Gillespie, 1998) (see figure 
1). with a daily temporal resolution and a spatial 

resolution of 1km/pixel. 

 

Figure 1. LST&LSE MODIS Product. 
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Once the training dataset is generated, a 
supervised classification based on Deep Learning 
algorithms is performed taking as validation data the 
MODIS land cover product (MCD12Q1) 1km/pixel to 
validate the classified areas, so that the algorithm is 
able to automatically classify urban and rural areas. 
Once this is done, the LST of each area is extracted to 

determine the urban heat island effect (SUHI) in 
different cities in Spain during the summer (June-
August) of 2021. 

2 METHODOLOGY 

As mentioned above, the present work is divided into 
several phases: a first phase focuses on obtaining data 
based on geophysical variables, a second phase is 
based on the creation of a predictive model for the 
classification of urban areas and surrounding rural 
areas, and a final phase focuses on the analysis of the 
heat island effect in three cities in Spain during the 

summer of 2021. 

2.1 Process chain in the creation of the dataset 

To differentiate urban areas from their surrounding 
rural areas in a city, one can take the centroid or 
(latitude/longitude) point located in the city centre and 
a (latitude/longitude) point located in the surrounding 
rural areas of the city. This methodology is more than 
valid for determining the urban heat island effect, but 

this process becomes complex when one wants to 
analyse this effect in a larger number of cities, due to 
the different characteristics of each city, such as 
climate, geographical location, altitude or proximity to 
the coast (Sobrino, 2012). 

All these characteristics make this task difficult to 
carry out. Therefore, the aim is to create a 
methodology capable of tackling this problem, based 

on the use of Deep Learning algorithms to classify 
urban areas and their rural areas. This requires a 
supervised classification based on segmentation and 
manual labelling of pixels. First of all, a selection of 
cities is made, which are different cities in Spain with 
different characteristics, such as geographical 
extension, number of inhabitants, proximity to the 
coast, altitude, etc. For this work, cities with a surface 

area greater than 5 km and cities with more than 
25,000 inhabitants were chosen.  

Once the study cities have been chosen, the pixels 
within the city are labelled as "urban areas" and the 
pixels of the surrounding rural areas as "rural areas", 
the interior areas or areas with a higher density of 
vegetation as "forest areas" and the rest of the pixels 
are labelled as "Others". A total of 12,485 points are 
taken for urban areas, 821,236 points for rural areas 

and 263,807 points for forest areas (see table 1).  

The MODIS land classification product 
(MCD12Q1) at 1 km/pixel and the Sentinel-2 Land 
Cover product at 10 m/pixel are used as a reference 
base. 

Table 1. Points labelled by segmentation 

 

Points 

Urban Rural Forest Other 

12.485 821.236 263.807 100.000 

Once the points have been obtained, the 
geophysical variables are obtained using the MODIS 
products (MYD21/MOD21). From these products we 
obtain LST (Land Surface Temperature) and LSE 
(Land Surface Emissivity) for bands 29, 31, 32 from 
the MODIS satellite (Terra/Aqua). To finalise the 
construction of the training dataset, it is necessary to 

carry out an interpolation of the labelled points on the 
MOD21 and MYD21 products, an example of the 
training dataset can be seen in table 2.  

Table 2 Training dataset points. 

Points E29 E31 E32 LST 

Urban 12.485 12.485 12.485 12.485 

Rural 821.236 821.236 821.236 821.236 

Forest 236.807 236.807 236.807 236.807 

Other 100.000 100.000 100.000 100.000 

Once the training dataset has been created, the 
next step is to create the predictive model. 

2.2 Process chain in the creation of the training 
network and automatic classification results 

2.2.1 Baseline 

To have a first approximation we have to establish a 
baseline on which to validate the final predictive 
model, for this we propose a classification based on 
Machine Learning algorithms such as the random 
forest (Breiman, 2001) and decision trees (Kingsford, 
2008). Before starting with the creation of the baseline 
we have to divide the dataset into training, validation 

and test samples, using our training dataset in 
proportion 80% for training, 15% for validation and 
5% for test. We then train our data with the baseline 
models. Once the training is finished, we obtain a 
classification accuracy of around 65~70% (see in table 
3). This first approximation leads us to use more 
complex algorithms based on "attention". 
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Table 3. Metrics for baseline evaluations 

Model 
RMSE 

Trainig 

RMSE 

Prediction 
Training Prediction 

Decision 

Trees 
0.0492 0.0563 0.671 0.664 

Random 

Forest 
0.0487 0.0524 0.693 0.682 

 

2.2.2 Attention Based Algorithm 

Following the above data partitioning we went on to 
build the attention-based training model (Vaswani, 
2017) (see figure 2). 

Figure2.Training network and automatic classification 

 

Once the model is trained, an accuracy of about 
85~90% is achieved (see table 4). To validate the 
robustness of the model, it is tested with the land cover 
product MCD12Q1 (MODIS LC_TYPE1). As it is a 
classification based on four labels, urban land, rural 

land, forest and other, the model is able to separate the 
pixels associated with these labels, so this first 
approximation to a global model achieves good 
accuracies in training and prediction of pixels 
associated with urban and rural areas, which is 
fundamental for the analysis of the urban heat island 
effect.  

Table 4. Metrics for model evaluations. 

Model RMSE 

Trainig 

RMSE 

Prediction 

Training Prediction 

Attention 0.0263 0.0342 0.892 0.884 

3 RESULTS 

3.1 Results of the automatic classification process 

This approach to a global model based on attention has 
achieved accuracies of around 90%. In figure 3 we can 

see the result of the classification, in this figure the 
classification of the urban areas and the surrounding 
rural areas of the city of Valencia as a result of the 
automatic classification is presented as an example. 
We can see that the model is able to differentiate the 
two zones, so this first approximation to a global 
model achieves good results for the study zones. 

 

Figure 3. Left image, MCD12Q1 land cover 
classification, right image, automatic classification of 
urban areas (black), rural areas (grey) Valencia 
(Spain) 

3.1 Analysis of the urban heat island effect 

Once the images resulting from the automatic 
classification have been obtained, the LST is extracted 
from the pixels classified as urban and rural areas. 
From the classification we selected three cities 
(Alicante, Valencia, and Tarragona) (see figures 4, 5, 6) 

to carry out the analysis. With the difference between 
the LST(Urban) and the LST(Rural), the SUHI effect is 
determined, for this analysis the night temperatures are 
used.  

It can be seen that for the three cities the effect 
remains constant during the summer period, reaching 
temperature differences from 1k to 5k. On the other 
hand, it can be seen that for the city of Tarragona, 
which has a lower infrastructure density than Alicante 

and Valencia, there is a smaller difference between the 
urban temperature and the temperature of the 
surrounding areas, so the SUHI effect is lower for the 
same summer period. The opposite case is the city of 
Valencia, whose infrastructure density is higher, so that 
of the three cities it is the one with the highest urban 
heat island effect for the same period. 
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Figure 4. SUHI effect obtained from the LST (urban) and LST (rural) values resulting from the automatic 

classification, Alicante (Spain). 
 

 
Figure 5. SUHI effect obtained from the LST (urban) and LST (rural) values resulting from the automatic 
classification, Valencia (Spain). 
 

 
Figure 6. SUHI effect obtained from the LST (urban) and LST (rural) values resulting from the automatic 
classification, Tarragona (Spain). 
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4 CONCLUSIONS 
 
The use of automatic classification algorithms is of 
great help in determining the different SUHI, UHI, etc. 
effects. It has been seen that this approach to a global 
model gives good results in the classification of cities 
and rural areas as they reach a fairly high accuracy and 

manage to differentiate these areas. This makes it 
possible to automate the calculation of the urban heat 
island effect and to generate warning maps of this 
effect more quickly and with a daily update of data. As 
future work, the use of different geophysical variables 
is proposed, as well as the use of different products 
obtained by remote sensors that help to improve the 
spatial resolution of the image and, in turn, the 

classification. 
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ABSTRACT- Inter-annual trends of land surface vegetation over the geostationary Meteosat disk (covering 
Europe, Africa, the Middle East and parts of South America) are analyzed. For this purpose, the Climate Data 
Record (CDR) time series for fraction of absorbed photosynthetically active radiation (FAPAR) and fractional 
vegetation cover (FVC) are considered. These CDRs offer consistent, homogeneous and continuous 10-day data 
for the period 2005-2020 derived from the best version of their equivalent near real time FAPAR and FVC 
products. The multi-resolution analysis (MRA) based on the wavelet transform (WT) was applied to derive the 

inter-annual trends of FAPAR and FVC time series. The MRA provides a temporal decomposition of the original 
series, where different components of the signal can be derived removing the contribution of specific temporal 
resolutions. The MRA-WT has demonstrated its potential to trace the inter-annual variability to detect trends 
using FAPAR and FVC climate data records from MSG/SEVIRI data. The results have shown a general greening 
in the central and eastern Sahel region, eastern Africa (Horn of Africa), eastern Spain and Turkey, which is 
associated with an increase in precipitation along the period. Some local negative changes have been observed 
in Senegal region and Southern parts of Africa, mainly attributed to variations of precipitation during the same 
period.  
 

 
1 INTRODUCTION  
 

The scientific community requires consistent 
long-term data records with well-characterized 
uncertainty and suitable for modelling terrestrial 
ecosystems and energy cycles at regional and global 
scales. A climate data record (CDR) of different 

variables for the characterization of terrestrial 
ecosystems is freely available within the EUMESAT 
Satellite Application Facility for Land Surface 
Analysis (LSA SAF) from SEVIRI sensor on board 
MSG 1-4 geostationary satellites. These CDRs offer 
more than fifteen years (2005-present) of 
homogeneous time series required for climate and 
environmental applications and are freely available 

from the LSA SAF web site (http://lsa-
saf.eumetsat.int). 

The development of effective methodologies for 
the analysis of time series (TS) is one of the most 
important challenging issues for the remote sensing 
community due to the dynamic nature of terrestrial 
ecosystems. In this study, the multiresolution analysis 
based on the wavelet transform (MRA-WT) is used 

because of its results during the last decades as a time–
frequency analysis tool for complex non-stationary 
signals in several study areas (Martínez and Gilabert, 
2009). Particularly, it was useful in the study of non-
stationary TS for the inter-annual variability of 

vegetation dynamics. The correspondence of 
vegetation inter-annual variability and climatic factors, 
particularly air temperature and precipitation, have 
been studied in other regions (Martínez et al., 2022). 

The main goal of this work is to analyze inter-
annual trends of land surface vegetation over the 
geostationary Meteosat disk. For this purpose, CDRs 

time series for fraction of absorbed photosynthetically 
active radiation (FAPAR) and fractional vegetation 
cover (FVC) are considered. These CDRs offer 
consistent, homogeneous and continuous 10-day data 
for the period 2005-2020 derived from the best version 
of their equivalent near real time FAPAR and FVC 
products. The MRA based on the wavelet transform is 
applied to derive the inter-annual trends of FAPAR 

and FVC time series. A local assessment over selected 
sites is performed enhanced with a regional analysis 
mainly focused in the African continent. Precipitation 
data is also considered in order to identify and 
understand the vegetation changes. 

 
2 METHODS 

 

The MRA-WT provides a temporal 
decomposition of the original series by removing from 
the original signal the contribution of specific 
temporal resolutions. The MRA-WT allows a fast 
decomposition by means of the implementation of the 
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discrete wavelet transform into timescales based on 
powers of two, 2j (j = 1, . . . , m), where j refers to the 
different levels of decomposition and m to the highest 
level considered (Martínez and Gilabert, 2009). As a 
result of the MRA-WT, the original signal can be 
reconstructed as, 

 
g (t) = Am (t) + Σm

j =1 Dj (t)   (1) 
 

where A is the approximation component and D the 
detail component. The temporal resolution of each 
level depends on the center frequency of the selected 
wavelet and the temporal resolution of the TS. In our 
case, the Meyer wavelet (with central frequency vc = 
0.672 Hz) is chosen due to its potential for vegetation 
dynamic analysis shown in previous studies (Rhif et 
al., 2022). The MRA-WT is applied until level 6 since 

it gives us the approximation component (A6) to assess 
the inter-annual changes. Once the inter-annual 
component is derived, the Mann-Kendall non-
parametric test and the Theil-Sen slope estimator 
(Martínez and Gilabert, 2009) are applied to 
statistically detect the FAPAR and FVC slope along 
the considered period.  
 

3 MATERIALS 
 

3.1 FAPAR 
 
FAPAR is the fraction of PAR that is absorbed 

by leaves and provides a link between the canopy 
function, i.e. its energy absorption capacity, and its 
structure and condition. The FAPAR CDR is 
compounded of the 10-day MSG FAPAR product 

(MTFAPAR, LSA-426) delivered by the LSA SAF 
network. The MTFAPAR product is a composition of 
the daily MSG FAPAR product (MDFAPAR), which is 
based on a linear relationship between the 
Renormalized Difference Vegetation Index (RDVI), 
computed from clear-sky top of the canopy 
reflectances in the red and near infrared bands for an 
optimal angular geometry in the solar principal plane. 

Observed deviations between MSG FAPAR and other 
FAPAR products are about 0.1 (García-Haro et al., 
2019).  

 
3.2 FVC 

 
FVC represents the fraction of green vegetation 

covering a unit area of horizontal soil, corresponding 

to the gap fraction in the nadir direction. The FVC 
CDR is a composition of the 10-day MSG FVC 
product (MTFVC, LSA-422). The FVC MSG product 
is derived from a stochastic spectral mixture model 
that addresses the variability of soils and vegetation 
types using statistical distributions (Garcia-Haro et al., 

2019). The MTFVC retrieval error has shown to be 
within the range of the typical differences found 
between satellite products, typically between 0.05 and 
0.10. 

 
3.3 Precipitation data 

 

The GPM data (GPM3IMERG product at 

monthly and 0.1  0.1 temporal and spatial 
resolutions) is also included for each site in order to 
qualitatively assess the precipitation-vegetation 
correspondence. The standardized precipitation index 
(SPI) at inter-annual scale is also computed since it 
quantifies precipitation anomalies by transforming 
observed precipitation into a gamma distribution for a 
specific time period.  

3.4 GLC2000 
Last, the 1-km Global Land Cover 2000 

(GLC2000) is considered to perform a local analysis 
(see the 13 selected sites in Figure 1). The global map 
is obtained from regional products modified to the 
local conditions offering an overall accuracy of 68.6%, 
similar to other land cover maps, such as the 
International Geosphere Biosphere Programme 
(66.9%) or Globe Cover 2009 (67.5%).  

 
Figure 1. Location of different selected sites over the 
GLC2000 image. 
 

4 RESULTS 
 

4.1 Local assessment 

 
The Theil-Sen slope of the inter-annual 

component (A6) for the FAPAR and FVC CDRs is 
computed for 13 selected sites. Figure 2 shows two 
examples of the obtained results for sites #6 and #8 
located in the Sahel and Somalia regions, respectively. 
Both original and A6 FAPAR time series are plotted.  
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Figure 2. Example of original (top) and A6 FAPAR 
(bottom) time series for site #6 and #8. The V3-6 
component is displayed in the center plot.    
 

The V3-6 component is a measured of the 

intra-annual variability, defined as the contribution of 
the detail components from level 3 to 6. Figure 3 
shows SPI-12 over the period 2005-2020. We can 
observe a clear recovery of site #6 from 2010 mainly 
associated to precipitation (Figure 3). For site #8, 
several drought events occurred during 2008-2012 and 
2017, which had a direct impact in FAPAR. 
Nevertheless and in spite of those events, vegetation 

managed to partly recover and reach FAPAR levels 
higher than those before the drought of 2017. 

 
Figure 3. SPI-12 from GPM data for site #8 located in 
Somalia region.  

 
Table 1 shows the slope derived from the 

FAPAR and FVC inter-annual component for all 
selected sites. Negative changes are smaller in 
magnitude than the positive ones (e.g., sites #1 and 

#2). Some local negative changes are observed in 
Senegal region and southern Africa. These changes are 
mainly attributed to variations of precipitation during 
the same period as exception of local areas, which can 
be affected by human activity or hazards events, such 
as forest fires (site #13 in Valencia region, Spain).  
 

Table 1. Local analysis over selected sites is 
performed. The Theil-Sen slope of the inter-annual 
component (A6) for the FAPAR and FVC CDRs is 
computed.   

4.2 Regional assessment 

The inter-annual trend images for FAPAR 

and FVC CDRs along the period 2005-2020 are shown 
in Figure 4. The results suggest a greenness 
concentrated on 10° N and 16° N, particularly in the 
central and eastern Sahel region (see Figure 2, site #6) 
and east part of Africa (Horn of Africa), which has 
been affected by severe drought periods in 2011 and 
2016-2017 (see Figure 2, site #8). Previous studies 
reported a re-greening and a vegetation growth after 

the drought and advancing desert in the 80s (Fensholt 
et al., 2012, Wu et al., 2022). This increase can be 
partly explained by precipitation.  

Regarding negative changes, southern Africa 
contains the major part of those changes. This is a 
particularly high risk area affected by drought events 
(Meza et al., 2020). Global assessments focused on 
how drought risk impacts on agriculture have 
recognized South Africa as a drought-prone country 

(Baudoin et al., 2017) that has experienced several 
“severe” drought events, as those occurred during the 
period 2014–16 (Baudoin et al., 2017), and the recent 
ongoing drought since 2018 (Mahlalela et al., 2020). 

Site 
ID 

Land cover 
GLC2000 

FAPAR slope FVC slope 

#1 Grassland 0.063±0.004 0.074±0.009 

#2 Grassland −0.016±0.005 −0.04±0.01 

#3 Cropland  −0.034±0.003 −0.026±0.003 

#4 Cropland  −0.053±0.002 −0.061±0.003 

#5 Forest 0.104±0.006 0.025±0.001 

#6 Cropland  0.107±0.003 0.048±0.003 

#7 Grassland 0.188±0.015 - 

#8 Grassland 0.114±0.009 0.063±0.005 

#9 Grassland −0.037±0.005 −0.099±0.009 

#10 Forest −0.038±0.003 −0.056±0.004 

#11 Grassland −0.026±0.009 −0.044±0.006 

#12 Grassland −0.022±0.002 −0.026±0.002 

#13 Open dec.& 
shrubland 

0.060±0.004 0.033±0.004 
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Figure 4. Inter-annual trend images for FAPAR and 
FVC CDRs along the period 2005-2020.    

 
5 CONCLUSIONS 

The MRA-WT has demonstrated its potential to 
trace the inter-annual variability for detecting trends 
using FAPAR and FVC CDRs from MSG/SEVIRI 
data with low uncertainties. Results have shown a 
general greening in the central and eastern Sahel 

region, east part of Africa (Horn of Africa), eastern 
part of Spain and Turkey, which is mainly associated 
with an increase in precipitation along the period. 
Some local negative changes are observed in Senegal 
region and southern parts of Africa. These changes are 
mainly attributed to variations of precipitation as 
exception of small areas, which may be affected by 
human activity or hazard events, such as forest fires. 
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ABSTRACT- In this work we use shortwave broadband albedo from satellite sensors and from in-situ surveys to 
calculate the monthly relative abundances of land cover types over Deception Island, Antarctica. In-situ 
distributed shortwave albedo data were collected using a portable albedometer over seven types of covers: 

continuous clean fresh snow (S1); continuous clean old snow (S2); continuous dirty snow (S3); mixture of clean 
snow, dirty snow and lapilli (S4); mixture of snow and bare soil patches (S5); shallow snow with small bare soil 
holes (S6); continuous bare soil (S7). MODIS MCD43A3 daily albedo product was downloaded using the Google 
Earth Engine API from 2000-2001 to 2019-2020 seasons. Each season extends from September to March of two 
consecutive years. Mean summer air temperature was calculated from data collected by an Automatic Weather 
Station. From the in-situ albedo data, each land cover type was characterized by a shortwave albedo normal 
distribution. From the satellite data, the monthly mean shortwave albedo histogram was calculated. The monthly 
relative abundance of each cover type was calculated by fitting for each month a linear combination of the normal 

distributions to the histogram of the satellite data. We calculated the seasonal mean albedo over the whole island 
and the seasonal relative abundance of each cover type. The results provide an accurate picture of the land cover 
change and its driving mechanisms. The mean albedo of the island is determined by the competition between land 
covers S4 and S6, the summer air temperature being the driving mechanism.  
 
1 INTRODUCTION 

 
The relative amount of snow and ice cover in Antarctica 

plays a crucial role in the surface energy budget. A 
precise description of the spatiotemporal evolution of 
the snow and ice cover is mandatory to understand the 
impact of climate change and to predict the future 
evolution of the ice cover. Although high- and mid- 
resolution satellite sensors may provide an accurate 
instantaneous picture of the land cover, their low 
temporal resolution is a serious drawback to obtain long 
time series. The reflectance of the surface in areas 

covered totally or partially by snow and ice depends on 
the properties of the snow and ice cover and on the 
relative amount of snow, ice and bare soil. Snow 
reflectance evolves over time at different time scales: it 
can change abruptly in few hours, and it also exhibits 
daily, monthly, and seasonal variations, along with 

long-term variations (trend) (Calleja et al. 2019). 
Moreover, in areas where snow melt is ubiquitous, the 
albedo of the surface varies along summer with the 

exposition of bare soil. The sole estimation of a mean 
albedo in such cases provides a poor description of the 
real picture. For example, a decrease in albedo can be 
due to the metamorphization of the snow or to an 
increase of the abundance of bare soil. On the other 
hand, albedo can increase as a consequence of new 
fresh snow or to an increase of the area covered by 
snow. It is our aim to show that the combined use of 
satellite and in-situ shortwave broadband albedo 

(albedo integrated in the range 300-3000 nm) can 
provide an accurate description of the land cover over 
an Antarctic site. The advantage of the method 
presented lies in the fact that in-situ measurements are 
easy to carry out, the equipment being rough, light and 
easy to transport over snowed and iced areas.   
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2 DATA AND METHODS  
 

2.1 Study area  
 

The study site is Deception Island, located in the South 
Shetland Islands Archipelago, in the NW coast of the 
Antarctic Peninsula (Fig. 1). Deception Island is an 
active volcano with recent eruptions and unrest 

episodes. It has areas of dark soil with varying size 
along summer as well as large areas of snow 
contaminated with volcanic ash. The changing mixture 
of bare soil and snow/ice makes it a suitable location for 
detecting changes in the land cover.  The Spanish 
Antarctic station Gabriel de Castilla is on the island.  

 
Figure 1. Location of Deception Island.  
 

2.2 In-situ data  
 

We used data from an Automatic Weather Station 
(AWS) on Deception Island and distributed albedo data 
collected in January 2019. Data from the AWS include 
hourly air temperature, as well as mean daily air 

temperature (AEMET 2022). Distributed albedo 
measurements were carried out using a homemade 
portable albedometer consisting of two pyranometers, 
one facing the sky and another facing the surface, and 
two synchronized dataloggers. The ratio of the signal 
from the pyranometer facing the surface to the signal of 
the pyranometer facing the sky provides the albedo of 
the surface. One measurement was collected every 5 
seconds while walking over a given sampling plot. The 

pyranometers were all the time placed parallel to the 
surface, and the chosen sampling plots were flat. Six 
landscape units were chosen as representative of the 
landscape following the expert criteria (Fig. 2): 
continuous clean fresh snow (S1); continuous clean old 
snow (S2); continuous dirty snow (S3); mixture of 
clean snow, dirty snow and lapilli (S4); mixture of snow 

and bare soil patches (S5); shallow snow with small 
bare soil holes (S6); continuous bare soil (S7).  
 

2.3 Satellite data 
 

MODIS daily albedo product MCD43A3 (C6) was used 
in this work (Schaaf and Wang 2015).  The time span is 
from 2000-2001 season to 2019-2020. Only data with 
SZA < 75⁰ are considered, this means from September 
1 to April 1. Data were downloaded using the Google 
Earth Engine API (Gorelick et al. 2017). MCD43A3 
includes one band of shortwave Black Sky Albedo 
(BSA), and one band of shortwave White Sky Albedo 

(WSA). In this work we present the results obtained 
using the shortwave BSA band. 
 

2.4 Data processing  
 

In situ data were processed as follows. Regarding the 
data form the AWS monthly and season means of 
meteorological variables were calculated only if data 
were available for at least 80% of the days (Bañón and 
Vasallo 2016). Mean summer temperatures were also 
calculated for seasons 2004-2005 to 2013-2014. 
Regarding albedo distributed measurements, we have to 
be sure that variations in the data correspond to 

variations in the surface, and we have to eliminate data 
fluctuations due to changes in illumination conditions. 
To achieve this, data were firstly filtered eliminating 
outliers in incident irradiance, reflected irradiance and 
albedo. Because snow albedo is very sensitive to the 
relative amount of direct and diffuse radiation, only 
datasets for which the coefficient of variation (CV = 
standard deviation / mean) of the incident radiation was 

below 6% were considered. We then checked that there 
was no correlation between the incident radiation and 
the albedo. We applied then a correction for cloudiness 
(Greuell and Konzelmann 1994). The method consists 
in calculating the albedo under clear sky from the 
actually measured albedo as: 
 

𝛼𝑐𝑙𝑒𝑎𝑟 = 𝛼𝑐𝑙𝑜𝑢𝑑 + 0.05(𝑛 − 0.5)               (1) 
 

Where αclear and αcloud are the broadband albedos 
measured under clear and cloudy sky (the actually 
measured one) respectively, and n is the cloud index 
(n=1 means a completely overcast sky, n=0 means a 
completely clear sky). The cloud index can be 

calculated from the cloud transmittance (T) and the 
height of the observation site (h) using the relation: 
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𝑇 = 1 − 𝐴𝑛2𝑒−𝐵ℎ                            (2) 
 

with A = 0.78 and B = 0.00085. 
The value of T is calculated assuming that 

      

Figure 2. Landscape units and a typical general view 
of Deception Island in summer with large extensions 

of bare soil. 
 

𝑻 =  
𝑬(𝒄𝒍𝒐𝒖𝒅)

𝑬(𝒄𝒍𝒆𝒂𝒓)
                                  (3) 

 

where E(cloud) is the measured irradiance and E(clear) 
is the irradiance that would have been measured under 
clear sky conditions. E(clear) depends on the SZA. To 
calculate E(clear) at the time of the acquired E(cloud) 
we used the measured irradiance on the closest date 
along a day with clear sky during all day. In our case, 
this happened on February 16, 2019. E(clear) at any 
time of the day was obtained by fitting hourly irradiance 

to the SZA: 
 

𝐸(𝑐𝑙𝑒𝑎𝑟) = 𝑎(𝑐𝑜𝑠𝑆𝑍𝐴)𝑏                                 (4) 
 
From the fit we obtained a = 1088 W/m2 and b = 1.7, 

with a coefficient of determination R2 = 0.97. 
With the resulting data sets we built a histogram for 
each of the landscape units. The histograms were fitted 
to a normal distribution. The mean albedo value and the 
standard deviation of each landscape unit is given in 
Table 1. 
 
Table 1. Mean albedo and standard deviation of the 

normal distribution of each landscape unit. 

Landscape unit Mean σ 

S1 0.830 0.016 

S2 0.736 0.013 

S3 0.457 0.018 

S4 0.599 0.040 

S5 0.313 0.080 

S6 0.166 0.053 

S7 0.041 0.009 

 

Satellite data were filtered to assure that the variations 
in the land cover were appropriately tracked. We must 
take into account that snow albedo changes in the span 
of a few days due to snow metamorphism and that due 
to the special characteristics of Deception Island, the 
snow cover can disappear in hours or days due to 
melting. Because of this, only pixels for which the mean 
difference between two consecutive albedo data along 

a month was below 8 days were considered in the 
analysis. With those pixels we calculated the monthly 
mean albedo and the seasonal mean albedo and the 
corresponding histograms (albedo range versus number 
of pixels).  
Each MCD43A3 pixel is the statistical mixture of the 
landscape units. The histograms on MCD43A3 monthly 
means were fitted to a linear combination of the normal 
distributions of the landscape units. The coefficients of 

the linear combination were interpreted as the relative 
amount of each landscape unit. We calculated the 
relative abundance of each landscape unit per month 
and the seasonal mean. 
 
3 RESULTS  

 
The mean relative abundance of each landscape unit 

along the period 2000—2020 to 2019—2020 is: S5 
(38%), S4 (27%), S6 (12%), S3 (11%), S2 (6%), S7 
(4%), and S1 (2%).  
Of all the meteorological variables measured at the 
AWS, the mean summer air temperature (mean air 
temperature in the period December-January-February) 
was the one exhibiting the highest correlation with the 
seasonal mean albedo over the island (Fig. 3). 
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Figure 3. Mean albedo against mean summer air 
temperature over Deception Island for seasons 2004-
2005 to 2013-2014. 

 

 
Figure 4. Seasonal relative abundance of landscape 
unit S4 against mean summer air temperature for 
seasons 2004-2005 to 2013-2014. 
 

 
Figure 5. Seasonal relative abundance of landscape 
unit S6 against mean summer air temperature for 
seasons 2004-2005 to 2013-2014. 
 

 
Figure 6. Relative abundance of S4 against relative 

abundance of S6 for seasons 2000-2001 to 2019-2020. 

On the other hand the relative abundance of S4 and S6 
exhibit a large correlation with the mean summer air 
temperature (Figs. 4 and 5) and a large negative 
correlation between them (Fig. 6). From these results, 
we can conclude that the evolution over time of the 
albedo over Deception Island is mainly driven by air 
temperature, such that the increase of air temperature 

seems to induce a decrease in albedo.  The albedo 
variation over the island is the result of a competition 
between landscape units S4 and S6. While the relative 
abundance of S4 decreases with increasing temperature, 
the relative abundance of S6 increases with increasing 
temperature. These results provide a first insight of the 
processes taking place over the island: it seems that 
soot, dust and lapilli (present in S4) act as melting 

centres, giving way to holes of bare soil (those observed 
in S6). This process seems to be the one determining the 
decrease of albedo with increasing temperature. 
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ABSTRACT - In this study a statistical orbit drift correction method was applied to TIMELINE AVHRR LST from 
NOAA 7, 9, 11, 14, 16, 18 and 19 afternoon overpasses at 12 sites across Europe. The corrected LST anomalies 
were validated against Ta anomalies from nearby meteorological stations. The results showed an improvement of 
the correlation (R) between the LST and Ta anomalies at most sites. A few sites showed a decrease of R, which can 

be explained by complex land cover (urban) or missing daytime effects of LST (at forest sites). After the orbit drift 
correction, the long-term trends of the LST anomalies were much closer to the Ta trends. Furthermore, 
climatological features visible in the Ta time series (like e.g. a warm period in the late 1980s) are more distinct in 
the LST time series after the correction. However, similar studies reached higher correlations between LST and Ta 
anomalies. This can be explained by a more uniform generation of the LST and Ta anomalies. Further 
improvements and validation are necessary to obtain a reliable and continent-wide orbit drift correction for 
AVHRR. It is also planned to extend the analysis to further orbit drift correction methods and also to other 
validation data, e.g. Landsat LST. 

 
1  INTRODUCTION 

LST is an important quantity for tracing the impact of 
changing climatic conditions on our environment from 
local to global scale. Changes in LST represent on the 
one side climate change processes like global warming 
and on the other side land surfaces processes like 
urbanization and deforestation. LST is recognized as 

one of the Essential Climate Variables (ECVs) by the 
World Meteorological Organization and has a strong 
link to near surface air temperature. 

For monitoring conditions repeatedly over large 
areas, satellite derived LST has become an 
indispensable tool. However, to make climate relevant 
statements and quantify the impact of land surface 
variables over long time, we need sensors that are, un-

like e.g. the Moderate Resolution Imaging 
Spectroradiometer (MODIS), available for more than 
30 years. The Advanced Very High Resolution 
Radiometer (AVHRR) is the only sensor providing 
spatially and temporally continuous, daily 
measurements for 40 years. The TIMELINE project 
(“Time Series Processing of Medium Resolution Earth 
Observation Data Assessing Long-Term Dynamics in 
our Natural Environment”, www.timeline.dlr.de) of the 

Earth Observation Center (EOC) of the German 
Aerospace Center (DLR) aims at the generation of a 

homogeneous multi-decadal time series from AVHRR 
data over Europe and North Africa (Dech et al. 2021). 
The resulting collection of remote sensing products 
contains land and sea surface parameters, a.o. LST 
(Reiners et al. 2021). It is planned to offer these 
products online to a wider community using a free and 
open data policy.  

However, the different overpass times and the 
orbital drift effect hide actual trends and anomalies in 
LST. Several methods exist to account for this effect of 
varying acquisition times on LST time series, which can 
be classified into physical and statistical methods. 
While physical models, as e.g. proposed by Liu et al. 
2019 try to reconstruct the diurnal LST cycle, statistical 
models try to delineate the orbit drift signal from the 

time series itself. 
In this study, the statistical daytime correction 

model by Julien and Sobrino 2021 is applied to the 
TIMELINE LST data and its performance is analyzed 
at different sites with different land cover across 
Europe. The model uses the regression between the LST 
anomalies and the corresponding SZA anomalies for 
each day of the year throughout the time series. This 
allows to remove the orbit drift effect for each sensor. 

An additional offset is used to adjust the observation 
times of the sensors.  
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An important requirement for these methods is 
that they preserve the actual trends in LST. However, 
especially for the period before the year 2000 no 
independent LST datasets exist to validate these 
methods. As an approximation, historical 
measurements of near surface air temperature (Ta) at 
various stations across Europe can be used. Despite the 

known differences between LST and Ta at short time 
scales, it is expected, that long term trends correspond 
in these two variables. In this study the performance of 
the model is validated through the correlation of the 
monthly anomalies of LST and Ta and through the 
comparison of their long-term trends. 

2  DATA AND METHODS  

2.1 Study sites  

For the evaluation of the orbit drift correction 12 
sites across Europe have been selected from the 

BEnchmark Land Multisite ANalysis and 
Intercomparison of Products (BELMANIP) network 
(Baret et al. 2006). These sites are characterized by a 
homogenous and stable land cover on the AVHRR 
sensor scale. This is important to reduce the influence 
of land cover change on the LST climatology at the 
respective site.  

For the comparison with Ta, the nearest 
measuring station to the respective BELMANIP site 
with the same land cover was selected from the EU 
Surface Temperature for All Corners of Earth 
(EUSTACE) network (Rayner et al. 2020). The map on 
Figure 1 shows the location of the BELMANIP sites 
and the corresponding EUSTACE stations. The 
smallest distance is between the cropland site 251 and 

the station Szeget (19 km), the hugest distance is 
between the Urban site 269 and the station Krasnaja Gra 
(369 km).  

 

 
Figure 1: Map of the Study Sites from BELMANIP and EUSTACE network 
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2.2 TIMELINE LST 

The TIMELINE LST product was derived from the 
brightness temperatures of AVHRR channels 4 and 5. 
Atmospheric correction was performed with an 
extension of the Split Window Algorithm by Becker 
and Li 2007 for AVHRR 2 and 3 and an extension of the 
Mono Window Algorithm by Qin, Karnieli and Berliner 
2001 for AVHRR 1. Frey, Kuenzer and Dech 2017 
extended these algorithms with a different set of 

coefficients for daytime and nighttime, each AVHRR 
sensor, sensor view angle class, Total Columnar Water 
Vapor (TCWV) class and LST class. The Level 3 
products consist of daily, 10-days and monthly 
composites of LST. While the daily composites contain 
the best LST observation of the day (lowest sensor 
zenith angle), the 10-daily and monthly composites 
contain maximum, minimum, median and mean LST 
for the respective period. 

 Daily LST and monthly maximum LST was 
extracted at the nearest pixel to the respective 
BELMANIP site. Only data from afternoon overpasses 
(12.00-16.00h true solar time) from NOAA-7, 9, 11, 14, 
16, 18, and 19 was taken. 

2.3 Air Temperature Data 

Ta data were taken from the (EUSTACE) project 
(Rayner et al. 2020), which offers daily homogenized 
measurements from meteorological stations. From the 
dataset the daily maximum Ta was selected (Tmax) and 
aggregated to monthly maximum Ta. 

2.4 Methodology  

The statistical orbit drift correction method by 
Julien and Sobrino 2021 is referred to as ‘C0’ in their 
publication. It uses a linear regression between the LST 
anomalies and a second degree fit of the sun zenith 
anomalies for each sensor. For the calculation the daily 
LSTs were aggregated for each day of the year through 

the complete time series of the respective sensor. The 
anomaly is the deviation of each observation to the 
mean of the respective day. The same procedure was 
carried out to calculate the sun zenith anomalies. A 
second-degree fit was applied to the sun zenith anomaly 
time series to reduce noise. 

The orbit drift contribution (ODC) to LST can 
then be described with the formula:  

ODC=ai*SZA_anom_fiti (1) 

where SZA_anom_fiti is the second degree fit of the sun 
zenith angle anomalies and ai is the regression 
coefficient. The regression coefficients were fitted to 
the LST anomaly time series via least square fitting. To 
correct the LST time series the ODC was subtracted 
from the LST values. 

For the validation the monthly maximum LST 
anomalies and the monthly maximum Ta anomalies 
were correlated before and after the correction. Also, 
the long-term trends of both variables were compared 
before and after the correction. 

 
Figure 2: Results of the Orbit Drift Correction for all sites: Correlation coefficients (R) between LST and Ta 
anomalies (left) and long-term trends of uncorrected LST, Ta and corrected LST (right) 
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3 RESULTS  

3.1 Correlation between LST and Ta anomalies  

Figure 2 shows an overview for all sites of the 
correlation coefficient (R) between monthly LST 
anomalies and Ta anomalies, as well as the trends 
before and after the correction. Looking at the left side 
of the Figure it becomes visible that R increases for 8 
of 13 sites. For three sites (228-Desert, 239-Desert, 
253-Croplands) the increase is over 10 %. Two sites 

show a small decrease of R (261-Mixed Forest, 269-
Urban), one site shows a decrease over 10% (254-
Grassland). For 251-Cropland the R stays the same 
before and after the correction.   

3.1 Comparison of the long-term trends  

Looking at the right side of Figure 2 it becomes visible, 
that before the correction the long term LST trends are 
one magnitude higher than the Ta trends at almost all 
sites. After the correction the LST trends are in a similar 
range as the Ta trends except for the site 253-Croplands. 
Similar trends of corrected LST and Ta can be observed 

at 228-Desert and 232-Croplands. Nearly similar trends 
are observed at 210-Desert, 251-Croplands and 248-
Open Shrub. For the sites 243-Broadleafed/Deciduous 
Forest, 254-Grassland, 261-Mixed Forest and 269-
Urban the LST trend almost vanished or even was 
turned into negative through the correction.  

3.2 The results at the site 239-Desert as an example 

An alternative interpretation of the LST or Ta 
climatology is the observation of climatological 
features in the time series. For example, the Ta time 
series at site 239 at Figure 3 shows warm periods in the 

late 1980s and 1990s. These warm periods can be 
related to climate modes like El Nino/Nina and can 
represent heatwaves and droughts.  Looking at the time 
series of uncorrected LST anomalies at Figure 4 these 
warm periods are hidden by the orbit drift effect. 
However, after the correction the one year moving 
mean of the LST anomalies shows a similar progress as 
the moving mean of the Ta anomalies, as visible in 
Figure 5. 

4 DISCUSSION  

The purpose of this study was to apply the statistical 

orbit drift correction method by Julien and Sobrino 
2021 on the TIMELINE LST data and to validate the 
results against historical Ta measurements. Julien and 
Sobrino 2021 validated their method against 
geostationary SEVIRI measurements form 2009-2015 
with bias absolute values under 1 K. However, their 
validation method provides no information, if the orbit 
drift correction is preserving the actual changes of LST 
over time. 

 

 
Figure 1: Monthly anomalies of maximum Ta at 239-

Desert 
 

 
Figure 2: Monthly anomalies of maximum uncorrected 

LST at 239-Desert 
 

 
Figure 3: Monthly anomalies of maximum corrected 

LST at 239-Desert 
 

Our validation showed that the orbit drift 
correction improved the R between the monthly LST 
anomalies and Ta anomalies at most sites. At four sites 
the correction did not increase or even decrease the R, 
which could be explained by several reasons: One site 
(261) is a forest site, where the influence of the daytime 

on LST is not strong. Site 251 already has a 
comparatively high R, which was not improved through 
the correction. Site 269 has urban land cover, where the 
complex structure of the surface at the AVHRR scale 
could influence the performance of the model. The 
strong decrease of R at the grassland site (254) has still 
to be investigated.  

Already Gutman 2010 applied a similar orbit 

drift correction method AVHRR data from NOAA-9, 11 
and 14 over the Sahel area. A visual comparison of the 
corrected LST anomalies with Ta anomalies at Niamey 
Niger showed a good accordance. Ta anomalies were 
also used in a recent study by Good et al. 2022 to assess 
the stability of the LST_cci datasets derived from 
MODIS and AATSR.  The correlation between LST 
anomalies and Ta anomalies in their study reached 

correlation coefficients between 0.77 and 0.94. 
However, the generation of their monthly Ta anomalies 
were based on the same coordinates and day as the LST 
anomalies, opposed to our study. 
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Further improvements are possible to enhance 
the significance for subsequent studies: First, the 
generation of the Ta anomalies and the LST anomalies 
should follow the strategy by Good et al. 2022 to get 
higher correlations between the Ta and LST anomalies. 
Second, it is possible to enhance the model describing 
the relationship between the LST anomalies and the sun 

zenith angle anomalies. For example, Julien and 
Sobrino 2022 introduced a seasonal component to the 
model, which could improve the results. Third, also 
physical models using the diurnal cycle of LST should 
be tested within this framework. And at last, there is 
Landsat remote sensing LST dating back to the 1980s, 
which also could be an independent source to validate 
orbit drift correction methods for AVHRR. 

5 CONCLUSIONS 

A statistical orbit drift correction method was 
applied to TIMELINE LST at 12 sites across Europe. 

The corrected LST anomalies were validated against Ta 
anomalies from nearby meteorological stations. 
Following results were obtained: 

The orbit drift correction method… 

• …improved R between the monthly anomalies 
of LST and Ta at most of the study sites. 

• …leads to more realistic long-term trends of 
LST at most study sites. 

• …mostly preserves climatological events in the 
LST time series at most study sites. 

Further improvements and validation are necessary to 
obtain a reliable and continent-wide orbit drift 
correction for AVHRR.  
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ABSTRACT - Optical and radar data are extensively used for vegetation and crop monitoring, particularly using 
vegetation indices. In the case of Synthetic Aperture Radar (SAR), these indices are mostly based on the 
backscattered intensity or descriptors extracted from polarimetry. The interferometric coherence, an observable 

obtained from radar interferometry, has sensitivity to the properties of crops in a scene (presence and growth of 
vegetation). Therefore, it could potentially be used as a vegetation index. The use of Sentinel-1 interferometric 
coherence data as a tool for crop monitoring has been explored in this work. For this purpose, time series of 
images acquired by Sentinel-1 and 2, spanning 2017, were analysed. The study site is an agricultural area in 
Sevilla, Spain, covered by a variety of different crop species. The time series of 6-day repeat pass coherence for 
each polarimetric channel (VV and VH), as well as their difference and ratio, were compared to the NDVI and the 
backscattering ratio (VH/VV). The contribution of different decorrelation sources, the use of different orbits and 
the effect of the bias from the space-averaged sample coherence magnitude estimation were evaluated. The results 

support using coherence (particularly the VV channel) as a measure for monitoring crop evolution, as it shows 
good correlations with the NDVI (R2>0.7), and its temporal evolution fits well the main phenological stages of the 
crops. The study was then extended to a bigger set of crop classes and a longer time series (2017-2021), validating 
all previous results. 
 
1. INTRODUCTION  

 
Crop monitoring is an important tool in the context of 

agricultural production. It can provide useful 
information for pest prevention and precision farming 
or help evaluate the effects of drought and other weather 
events. It serves an important role in crop yield 
forecasting and can inform decisions about policies 
regarding food supply and food security. 

The use of remote sensing imagery offers a regular 
and non-destructive way to acquire information about 
plant growth and development. The use of different 

techniques and spectral regions can help address 
problems and limitations: temporal and spatial 
resolutions, sensitivity to weather conditions (clouds, 
rain), ability to perceive specific characteristics of the 
scene, etc. 

Vegetation indices (VI) are combinations of 
different sources of information (bands, parameters, 
etc.) that provide descriptors of vegetation surfaces, 

used to highlight vegetation in a scene and for many 
other purposes, such as land cover classification, 
detection of crop diseases, retrieval of biophysical 
parameters, drought monitoring or crop management. 

VI for optical data are usually defined as 
combination of different spectral bands. There are a 
wide variety of indices, depending on their objectives 
and limitations. The most used, such as the NDVI 

(Bannari et al., 1995), rely on combinations of bands 
corresponding to the red and near infrared frequencies. 
This is based on the characteristic rapid change in 

reflectance of vegetation in the region between 650 nm 
and 730 nm, known as the red edge. 

In the case of SAR imagery, direct estimations of 
biophysical parameters are not trivial. Radar VI provide 
a more physically interpretable description of 
vegetation. They are generally based on the 
backscattered intensity at different polarimetric 
channels or descriptors extracted from polarimetry 
(Mandal et al., 2021). These polarimetric channels 

represent the polarization of the returned radar signal. 
In the case of S1, the emitted signal is polarized 
vertically, and VV and VH represent the components of 
signal received from the scene with vertical or 
horizontal polarization respectively. 

An alternative to working with the backscattered 
intensity is exploiting the use of parameters derived 
from SAR interferometry, or InSAR (Bamler and Hartl, 

1998). One particular product of the interferogram 
between pairs of images (pairs of images corresponding 
to consecutive dates in the case of this study) is the 
interferometric coherence. It can be used as a measure 
of the quality of the interferometric phase. Its 
estimation is carried out using the sample coherence 
magnitude (Touzi et al., 1999), which can serve as a 
measure of change between the pair of images. Low 
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values generally indicate changes in the scene from one 
image to the other, and vice versa. Other factors can 
lead to lower coherence values. For instance, both the 
change and the presence of vegetation lead to a decrease 
in coherence.  

The sample coherence is a biased estimator, where 
low values of measured coherences are higher than the 

actual coherence. This bias depends on the number of 
independent samples used in the estimation, and 
decreases when this number grows, as the estimator is 
asymptotically unbiased (Touzi et al., 1999). 

The coherence can be understood as the product of 
different contributions (Zebker and Villasenor, 1922; 
Bamler and Hartl, 1998), representing different sources 
of decorrelation: 

 
γ= γgeom γvol γSNR γtemp

 (1) 
 
The first term represents the geometric 

decorrelation caused by the spatial distance between the 
orbital positions at the moment of acquisition 
(baseline). The second refers to the volumetric 
decorrelation and appears when there is a vertical 

distribution of scatterers over the same pixel. These two 
effects can be disregarded in this case due to the small 
and stables baselines of S1 (typically below 150m). 

The remaining terms describe the thermal noise 
caused by the instrument, dependent on the signal-to-
noise ratio (SNR), and the temporal decorrelation. The 
temporal decorrelation represents the loss of correlation 
due to changes in the scene, including changes and 

wind-induced movement in the vegetation, water 
content (both in the soil and the canopy) or man-made 
changes, like processes associated with agricultural 
exploitation (ploughing, sowing and harvesting). 

The changes in the time series for the coherence 
over the cycle of a crop’s development reflect the 
phenological stages of the vegetation. The coherences 
for each polarimetric channel take high and relatively 
constant values outside of the growing season, as there 

is not much variability when the surface is bare soil. 
When the crop starts to grow the coherence diminishes, 
as the vegetation grows and changes from one date to 
the next. Then, the coherence stays low, and very 
similar for both channels, as the movements in the 
plants caused by the wind result in an almost complete 
loss in correlation. The agricultural processes 
associated with the ploughing, sowing and harvesting 

of the crop have an impact in the coherence as well, by 
changing the texture and cover of the surface. The 
curves for the coherence for each channel, as well as the 
ones obtained for combinations of them, are shaped by 
these effects in a way that resemble the NDVI and other 
commonly used vegetation indices. Some recent studies 
support this relationship between the interferometric 

coherence and the NDVI (Nasirzadehdizaji et al., 2021; 
Pandit et al., 2022). 

The purpose of this work was to explore whether 
the apparent similarities between the coherence time 
series and the NDVI could be quantified, as a measure 
of the potential for the interferometric coherence as a 
descriptor of crop evolution. Initial results for the time 

series of 2017 are described in a recently published 
article (Villarroya-Carpio et al., 2022). The study of the 
complete time series (2017-2021) used that work as a 
starting point, as well as serving as validation of the 
observations. 

 
2. MATERIALS AND METHODS  

 

2.1 Study area  
 

The test site chosen for the study is an agricultural area 
near Sevilla, Spain, entitled BXII sector (Figure 1). A 
wide variety of crops species are planted in this region 
every year.  

Satellite imagery from both Sentinel-1 and 2 
covering the test site during the 2017-2021 period were 

used. Additionally, data regarding the distribution of 
crops in the scene, as well as information regarding the 
cycle of the crops, and meteorological data, were used 
in the process of construction of the time series. 

 
2.2 Satellite imagery and reference data 

 
The complete series of products from the Sentinel-1 

(S1) constellation covering the period of study were 
used. This includes images corresponding to orbit 74 
from both S1 A and B, with polarisations VV and VH, 
and a revisit time of 6 days. 60-61 images were 
available for each year, except for 2021, with 58, due to 
operation problems with S1 B starting in December 
from that year. All images from 3 different orbits (74, 
147 and 154) were used in the case of 2017, in order to 
study the effect of the observation geometry and the 

time of acquisition. 
Regarding Sentinel-2 (S2), the images used 

correspond to the reflectance product, with Level-2A 
processing. These images present a 10m spatial 
resolution, and while the revisit time is 5 days, only 33-
41 partially or completely cloud-free images were 
available, depending on the year. 

 

The reference data consisted of: 
1) Ground truth classification maps, giving 

information about the distribution of different 
types of crops over the area. These maps were 
acquired from the official land parcel 
identification system. 
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Figure 1.  Test site for the study. On the top right, a map of coherence for the VV channel. On the bottom right, 
the NDVI. Both images correspond to a date at the beginning of August of 2017. 

 
2)   A crop calendar for the crops cultivated in the 

region, with approximate starting and ending 
dates for the periods of sowing, growth and 

harvesting. 
3)  Daily rainfall and wind speed data, obtained 

from the Sistema de Información Agroclimática 
para el Regado (SIAR, 2022).  

 
2.3 Methodology 

 
The first part of the process was the pre-processing of 

the Sentinel products. The steps performed for the S1 
images were as follows:  
 

1) Selection of sub-swath and bursts. 
2) Refining of the orbit state vectors. 
3) Radiometric calibration. 
4) Coregistration. 
5) Speckle filtering and coherence estimation. 

6) Geocoding, with an output posting of 10 m. 
 

As a result of this process, series of images for the 
backscattering coefficient and the coherence amplitude 
were obtained. In the case of the study covering 2017, 
additional steps were taken in order to perform the 
compensation of the bias and removal of the thermal 
noise (Villarroya-Carpio et al., 2022). 

As for S2, the pre-processing included the steps of 
cloud masking, the mosaicking of the 2 tiles covering 
the test site and the computation of the NDVI. The 
resulting images share with the S1 products a spatial 
resolution of 10 m. 

 

Following the pre-processing, time series for each 
of these products were generated using the crop type 
classification data. The results were series of values of 

NDVI, backscatter and coherence for each of the crops 
in the scene. Additionally, the time series for different 
radar VI were computed, including the ratio between 
the backscattering coefficients (VH/VV), and also the 
difference and ratio between the coherences for both 
channels: VH/VV and VH-VV. The series were 
constructed by extracting the values for all the pixels 
corresponding to each of the crops. An example of the 

time series for one of the crops can be seen in Figure 2. 
Finally, the crop calendar was used to delimit the 

period of crop growth in the time series, in order to 
establish the comparison between different series both 
for this selected period and for the complete curve. To 
study this relation, the correlations between the SAR 
data and the NDVI were calculated. 

 

3. RESULTS  
 

3.1 Initial study in 2017 
 

The results of the initial analysis for the time series 
spanning 2017 are comprehensively described in 
Villarroya-Carpio et al., 2022. Several points of interest 
were examined. First, the effect of compensating for the 

systematic bias in the measured coherence. The bias 
appears for lower coherence values, and therefore has a 
larger impact on the VH channel, as it generally shows 
lower coherences. The result of this bias is a reduction 
in the range of values for the coherence. Its effect on the 
correlation between the coherence and NDVI time 
series was evaluated.  
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Figure 2. Example of the time series for one of the crops 
in 2017. From top to bottom: the backscattering ratio, 
the coherence for both channels (VV in red/light and 
VH in green/dark), the difference between them, and the 
NDVI. The average value for all the corresponding 
pixels is represented in a continuous line, while the 
shaded area shows the corresponding standard 
deviation. 

 
Additionally, the comparisons between coherence 

and NDVI were performed before and after removing 
the component related to the thermal noise (Equation 
1).  γSNR takes very high and constant values for the VV 
channel, yet it is noticeably lower and more variable for 
VH. The thermal noise affects mainly areas of low 
backscatter, and the backscattered intensity is lower for 

VH. The impact of subtracting this term on the ability 
for the coherence to describe crop dynamics was 
studied. 

Other analysed sources of variability in the results 
were explored: the use of 3 orbits, each with some 
differences in the observation conditions (flight 
direction, moment of acquisition, observation angle) 
and different temporal baselines: 6 and 12 days. 

In most cases, the coherence was found to be well 
correlated with the NDVI (R2>0.7), with VV providing 
the best results, and VH performing better in some 
cases. Additionally, while the coherence was generally 
more correlated to the NDVI than the backscattering, 
this was not the case for all crops, for instance in the 
case of rice. 

From all the available orbits, the one with the 

steepest observation provided the best results. A change 
in the angle of observation influences the combination 
of the radar responses from the vegetation and the soil. 
A more vertical observation angle increases the 
component received from the ground, and, 

consequently, should lead to higher values of 
coherence, as the ground is less susceptible to temporal 
decorrelation. Other observation conditions proved to 
be less impactful. 

The processing steps required in order to address 
and compensate the bias and remove the thermal noise 
from the coherence did not provide meaningful 

increases in the correlations with the NDVI and are not 
critical to obtain good results. 

Finally, regarding the use of different temporal 
baselines, the curves obtained for a 12-day temporal 
baseline are less correlated with the NDVI, but the 
correlations are still high in most cases. 

 
3.2 Full analysis: 2017-2021  

 
Using these results as a starting point, the study has 
been extended to a longer time series, from 2017 to 
2021. In this case, only the images from the optimal 
orbit (orbit 74) were used to create the radar time series. 
Likewise, the steps of bias and thermal noise removal 
were not performed.  

The pre-processing and creation of the time series 

for each year were analogous to those for 2017. The 
comparisons between SAR and optical time series were 
established both for the delimited periods of crop growth 
and for the complete time series. Figure 3 shows the 
evolution of the coherences for both VV and VH over 
the years in the case of a particular crop.  

 
Figure 3. Time series of the biased coherence for both 
polarimetric channels for one of the studied crops. 
 

The sets of curves in each case qualitatively follow 
the same trends. VV covers a wider range of values, as 
well as higher coherences outside the period of 
maximum growth of the crop. The coherence decreases 
for both channels as vegetation starts to grow, and stays 

   101 



at a minimum value (different from zero due to the bias 
in the measured coherence) while the crops cover the 
scene. This consistency from one year to the next is 
observed for all crops, and the series for the different 
years replicate the results obtained for 2017.  

Table 1 contains the coefficients of determination 
(R2) for some of the correlations between the coherence 

and NDVI time series.  
VV is generally the series correlated the most to the 

NDVI. The exceptions are some crops that grow earlier 
in the year and generally consist of more sparse 
vegetation (carrot, chickpea and onion). In the case of 
sunflower, the correlations for both channels are equally 
good. 

The correlations are particularly low in 4 cases. In 
the case of barley and oats this happens because these 
crops occupy the smallest surface and number of fields. 
Due to this, the presence of some errors in crop type 
classification has a big impact in the quality of the 
curves for the time series. Alfalfa and rice are special 
cases, where the poor results are due to specific features 

of the time series. Alfalfa is cultivated differently from 
other species, with a multi-annual growing cycle and 
periodic harvests where the crop is partially cut and left 
to regrow. This results in relatively constant values of 
coherence and NDVI, and poorly defined curves.  

 
 
 

Table 1. Coefficient of determination (R2) for the linear regressions between the measured coherence and the 
NDVI, for each channel and year. The values in bold correspond to the best result in each case. 

 

 
2017 

 
2018 

 
2019 

 
2020 

 
2021 

 
VV VH 

 
VV VH 

 
VV VH 

 
VV VH 

 
VV VH 

Alfalfa 0,01 -0,01  -0,03 -0,02  0,19 0,12  0,04 0,01  0,36 0,14 

Barley - -  -0,06 -0,07  -0.04 0.18  0,02 -0,14  0,58 0,30 

Carrot 0,37 0,65  0,13 0,72  0,30 0,81  0,29 0,56  0,57 0,68 

Chickpea 0,68 0,60  0,76 0,66  0,63 0,66  0,84 0,67  0,39 0,47 

Cotton 0,93 0,84  0,92 0,84  0,90 0,85  0,92 0,77  0,81 0,41 

Fallow - -  - -  - -  - -  - - 

Maize 0,88 0,75  0,96 0,68  0,87 0,57  0,94 0,80  0,83 0,59 

Oats - -  0,10 0,17  0.18 0.02  0,07 0,14  0,60 0,36 

Onion 0,66 0,82  0,72 0,70  0,85 0,80  0,67 0,76  0,80 0,76 

Pepper 0,89 0,72  0,85 0,78  0,92 0,69  0,87 0,90  0,88 0,71 

Potato 0,92 0,74  0,29 0,50  0,68 0,66  0,47 0,35  - - 

Pumpkin 0,80 0,76  0,82 0,87  0,88 0,82  0,96 0,83  0,89 0,85 

Quinoa 0,83 0,67  0,75 0,20  0,89 0,79  0,80 0,66  0,88 0,59 

Rice 0,18 0,07  0,36 0,25  0,33 0,30  0,08 0,17  0,30 0,35 

Sugar beet 0,85 0,78  0,78 0,80  0,82 0,76  0,73 0,67  0,83 0,76 

Sunflower 0,72 0,77  0,82 0,72  0,74 0,69  0,72 0,72  0,81 0,94 

Sweet potato 0,78 0,72  0,90 0,76  0,95 0,67  0,96 0,75  0,89 0,78 

Tomato 0,85 0,81  0,90 0,71  0,79 0,55  0,83 0,62  0,75 0,64 

Wheat 0,72 0,51  0,03 -0,06  0,49 0,45  0,28 0,24  0,55 0,26 
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In the case of rice, the coherence behaves 
differently with respect to the other crops: the ground is 
flooded before the sowing, leading to a loss in 
correlation before the crop begins to grow. This is not 
the case for the backscattering coefficient and the NDVI, 
which show the typical increase when plants develop. 

The results of considering the complete time series, 

instead of restricting the dates used to those 
corresponding to the growing cycle of the crop, show 
that the correlations remain generally high. This could 
mean that selecting the right window in the time series 
for the comparison is not critical. Finally, correlations 
between coherences and NDVI while working with the 
difference between channels (VH-VV) or the ratio 
(VH/VV), were generally lower than for each of the 

channels on its own. 
 

4. CONCLUSIONS 
 

The main key point to be concluded from the results of 
this study is that Sentinel-1 interferometric coherence 
can be used as a vegetation index for crop monitoring, 
as it appears to describe the evolution of vegetation in a 

similar way as already used VI. In the cases where the 
coherence did not offer a good description of the 
dynamics of the crop, the backscatter can offer 
complementary information. 

The series for the VV channel are generally the 
most correlated with the NDVI. For some cases of early 
crops with sparser vegetation cover, VH offers a better 
performance. Simple combinations of the channels, such 

as the difference or the ratio between them, do not 
provide advantages over the use of the channels 
separately. The processing steps required for the 
correction of the bias and the separation of sources of 
decorrelation could be skipped, as they do not provide 
clear improvements in the results.  

Regarding the conditions of observation, using the 
orbit with the steepest angle of observation guarantees 
the best correlation with the NDVI. While a 6-day 

temporal baseline provides the best results, the 12-day 
temporal resolution should still be useful for monitoring 
most crops. Finally, the good correlations between the 
coherence and the NDVI appear not to be restricted to 
the crop’s growing cycle. 
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ABSTRACT: The rapid acceleration of urbanization has a serious impact on the urban ecological environment. 
It is of great significance to carry out numerical simulation research on urban spatial thermal environment for 

improving urban ecological environment, optimizing building energy consumption and promoting sustainable 
urban development. At present, in the simulation research of vegetation mitigation of urban thermal environment 
based on computational fluid dynamics, there are few studies on the influence and accuracy evaluation of 
different vegetation settings in CFD on the simulation results. Aiming at the quantification of the impact of 
vegetation changes and vegetation model settings on the numerical simulation of urban three-dimensional 
thermal environment, this study is carried out: 1) Based on the combination of Gaofen-2 remote sensing data 
and CFD model, the current situation of wind and heat environment at the block scale was simulated and 
analyzed; 2) The vegetation model is assumed to be three models, including cold source, constant temperature 

wall, and porous medium. Based on the heat transfer and cooling mechanism of vegetation, these three different 
vegetation models and their related CFD parameter settings are used to simulate the thermal environment of 
urban three-dimensional space. Analysis of applicable scenarios and accuracy studies to optimize vegetation 
setting parameters. The research results show that: 1) The distribution of temperature has a great correlation 
with the direction of wind. The temperature distribution at different heights at night did not show significant 
differences. Due to the obvious convective heat transfer between the building surface and the atmosphere, the 
temperature in the upwind direction is significantly lower than that in the downwind direction. 2) At a height of 
2m and below, setting the vegetation as the wall model has the best performance, and at a height above 5m, the 
results of the wind and heat environment of the three setting methods are basically similar. The wind environment 

results of the same vegetation setting are different at different heights. 
Keywords: CFD, remote sensing, air temperature, vegetation model 
 

 

1. INTRODUCTION 
 

In recent years, with the rapid development of 
industry and urbanization, various urban ecological 
environment problems have emerged. Among them, 

the urban thermal environment closely related to 
people's health and life is particularly prominent, 
which has attracted extensive attention of scholars. On 
the one hand, the urban thermal environment not only 

has a significant impact on people's living comfort, 
urban climate and atmospheric environment; On the 
other hand, the severe thermal environment has 
increased energy consumption and greenhouse gas 
emissions, making the incidence rate and mortality of 
diseases related to thermal environment rise. A large 
number of greenhouse gas emissions further aggravate 
the severe urban thermal environment. 
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The urban thermal environment is spatially 
represented by the horizontal and vertical distribution 
of the surface temperature and atmospheric 
temperature field. It is a physical environment system 
in which human activities interact with nature. The 
urban thermal environment has a significant impact on 
the urban climate and micro meteorology, with the 

surface temperature and atmospheric temperature of 
the urban underlying surface as the core and the 
underlying surface condition, atmospheric 
transmission condition and solar radiation as the 
components after being affected by human activities, It 
is one of the important indicators to measure the urban 
ecological environment, and its spatio-temporal 
evolution process is inseparable from human social 

and economic activities. Therefore, it is of great 
significance for urban ecological security and 
sustainable development to study the urban thermal 
environment, quantitatively analyze the spatial and 
temporal change process of the high-resolution 
thermal environment distribution pattern, and mitigate 
the urban thermal environment based on modern 
advanced technology and methods. 

Green space and vegetation play an important 
role in mitigating urban thermal environment and 
reducing heat island effect. Therefore, the research on 
urban thermal environment mitigation and 
improvement based on green space and vegetation has 

attracted extensive attention of scholars (G ü lten 

2016). The research focuses on the relationship 
between urban heat island effect and various factors of 
vegetation, such as urban heat island intensity and 
vegetation index (Gallo 1993), vegetation abundance 
(Weng Q 2004), standardized compactness index 
(Yangzhou Zhang 2017), etc. The mechanism of green 

vegetation to mitigate heat island effect is mainly 
reflected in the following two aspects (Hou C 2018): 
on the one hand, vegetation absorbs some solar 
radiation through its own photosynthesis, and then 
reflects some solar radiation through vegetation leaves 
(Dimoudi A 2003). The maximum temperature 
difference caused by trees by shielding solar radiation 

and absorbing energy can reach 6 ℃; On the other 

hand, transpiration of vegetation absorbs most of the 
heat and converts it into latent heat flux, thus 
preventing the rise of temperature. Under the 
combined effect of tree transpiration and shading, the 
outdoor thermal comfort has been greatly improved 

(Lin B R 2008). 
However, most scholars use ground observation 

and satellite remote sensing methods to quantitatively 
study vegetation mitigation of urban three-dimensional 
thermal environment. Among them, the urban space 
thermal environment research based on ground 
observation can effectively calculate the change rule 
of station temperature at different time scales, but 

there is a problem that discrete point data replaces area 
data, and the station observation airspace is not 
representative. In addition, the data obtained from 
ground observation mostly depends on meteorological 
stations and manual collection of instruments, which is 
time-consuming and laborious in obtaining data in a 
large area and at multiple points; The research on 

urban space thermal environment based on remote 
sensing can retrieve the surface temperature field and 
surface ecological parameters, but at present, limited 
by the resolution accuracy of remote sensing data, the 
research on vegetation mitigation of urban thermal 
environment focuses on large suburban parks, while 
the parks with small urban center area are difficult to 
study and analyze by remote sensing. 

Based on computational fluid dynamics (CFD) 
numerical simulation method, this paper simulates the 
mitigation effect of vegetation on urban thermal 
environment at the community scale. In addition, 
explore the different CFD settings of vegetation under 
fine scale, the heat conduction and heat convection 
between vegetation and atmosphere and other physical 
processes through numerical simulation to obtain the 

distribution of urban three-dimensional space 
temperature field and wind speed field. The 
mechanism of thermal environment mitigation of 
vegetation is analyzed and explored from the 
microscopic perspective by setting vegetation as wall, 
cold source and porous medium, and the heat transfer 
mechanism of vegetation is analyzed and discussed 
according to the simulation results to simplify the heat 

transfer process and optimize the parameters. Compare 
the measured data with the simulation results to 
evaluate the advantages and disadvantages of the three 
different vegetation settings, and apply the vegetation 
settings with the highest accuracy to the simulation 
study of the thermal environment of vegetation 
mitigation in a park. 

 
2. METHODOLOGY 

 
2.1Study area 
 

In this study, Beijing Yaowa Lake Park was 
selected as the study area. Beijing Yaowa Lake Park is 
located in Nanmofang Township, East Fourth Ring 
Road, Chaoyang District, Beijing (as shown in Figure 
1), bordering Daliushu Road in the south, Nanmofang 

Road in the north, and Chemical Road in the northeast. 
The whole park is divided into east and west parts by 
the Fourth Ring Road, with a total area of 545 mu, 
including 169 mu for the East Park and 376 mu for the 
West Park. 
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Fig. 1 Satellite remote sensing image of Yao Wahu 

park in the study area 

 
2.2 Physical model establishment 

 
In order to discuss the influence of different 

settings of vegetation area in CFD on simulation 
results. Taking Yaowa Lake Park as an example, CFD 
flow and heat transfer simulation was carried out by 
establishing a three-dimensional model of the trees in 

the park. The physical model of Yaowa Lake Park is 
established according to the obtained high-resolution 
remote sensing images. 

In the model, the tree model is reflected in the 
physical model, and the tree part is divided into the 
crown and trunk. Since different shapes of tree crowns 
will also affect the simulation of convection field, Li 
Liang et al. compared the effects of different crown 
shapes on the convection field through wind tunnel 

experiments. The results show that the rectangular 
crown shape can get more accurate results, and has the 
characteristics of simple modeling, fast solution and 
good convergence. The size of the tree crown model is 
set as a cylinder with a trunk height of 3m and a 
diameter of 0.3m, and a cuboid with a crown height of 
4m and a length and width of 3m. According to the 
field survey, the trees in the north of the park are tall, 

so the crown height of the trees in the north is set at 
6m. The tree model is shown in the following figure: 

 
Fig. 2 Physical model and tree model of Yaowahu Park 

 

2.3 Three Setting Modes of Vegetation Heat Transfer 

 

The heat exchange that occurs when a fluid flows 
over a solid surface is called convection heat transfer. 

The heat transfer mode between the vegetation and the 
atmosphere at the block scale is mainly convection 
heat transfer. The basic formula of convection heat 
transfer is Newton's cooling formula, which is as 
follows:  

q=h(Ts-T∞) （1） 

Where: h is the convection heat transfer coefficient, 
which represents the parameter of convection heat 

transfer capacity, W/（m2℃）. 

It can be seen from the non slip boundary 
condition that heat is transferred through heat 
conduction in the extremely thin fluid layer attached to 
the wall. The non slip boundary condition is applicable 
to both laminar and turbulent flows. According to the 
equality of heat transfer and Fourier's law and 

Newton's cooling formula theorem, it is obtained that: 

q=h(Ts-T∞)=-k(
∂T

∂y
)

n=0

→h=-
k

∆t

∂T

∂y
 （2） 

In this paper, the same meteorological parameters 
and boundary conditions are used, and different 
settings of vegetation areas are used as a single 
variable for simulation comparison. Vegetation is set 
as wall, cold source and porous medium to participate 

in CFD simulation. The heat transfer mechanism of 
three different settings is slightly different: 

The way that vegetation is set as wall and porous 
medium is to consider the heat exchange between 
vegetation surface and atmosphere as convective heat 
transfer; The way to set vegetation as cold source is to 
consider vegetation as a solid heat absorber, and then 
participate in the heat exchange between the 

atmosphere. According to Fourier's law and energy 
conservation equation, the differential equation of heat 
conduction with internal heat source in rectangular 
coordinate system is obtained: 
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Where: a is thermal diffusivity, also known as thermal 
conductivity, m2/s; Is the heat generated by the internal 
heat source in unit time and unit volume, W/m2. 
 
3. RESULT 

 
3.1 Simulation results of Temperature field 
 

The results of thermal environment and wind 
environment simulated by CFD block scale flow and 
heat transfer model are shown in Table 4-1, which 
shows the simulation results of temperature 
distribution and velocity distribution at different 

heights and with different settings. 
Vegetation plays an important role in mitigating 

heat island effect in summer. From the perspective of 
botany, the cooling mechanism of vegetation can be 
divided into direct cooling effect and indirect cooling 
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effect. The direct cooling effects include: ① 

transpiration of plants emits water and converts solar 

radiation energy into latent heat. ② Photosynthesis of 

plants absorbs solar radiation, thereby reducing the 
temperature of the surrounding environment. Indirect 

cooling effects include: ① shielding and reflection of 

plant leaves, and the temperature of the environment 

under the leaves decreases. ②  The large area of 

vegetation cooling makes the temperature difference 
between this part of the region and the surrounding 
temperature, which drives the flow of air flow and 
enables heat transfer and heat exchange, thus 
improving the surrounding temperature. 

3.2 Simulation results of wind speed field 
 

The block scale wind environment simulation 
results of different vegetation settings based on CFD 
are shown in Table 2. The following table shows the 

wind environment simulation results at different 
heights. Different from the temperature distribution 
results at different heights, due to the high tree 
planting density and leaf density in the park, the 
roughness of the underlying surface is high, and the 
influence of the boundary layer, the air flow at 10m 
and above is still affected by the vegetation. 

 

 
Tab. 1 Temperature distribution results 

Height Wall Cold resource Porous medium 

1.2m 

   

2m 

   

5m 

   

10m 

   

15m 

   

20m 
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Tab. 2 Velocity distribution results 

Height Wall Cold resource Porous medium 

1.2m 

   

2m 

   

5m 

   

10m 

   

15m 

   

20m 

   
 

The wind environment results of the same 
vegetation setting mode are different at different 
heights. First of all, it is reflected in the height of 2m 
and below (that is, near the ground). At this height, the 
speed of the wall is significantly reduced in the park. 
Vegetation blocks the airflow and forms a wake, which 
is mainly distributed in the upwind direction. At 5m, 
the area of low wind speed area decreases, and there is 

also obvious wake in the downwind direction of trees, 
and the wake is distributed throughout the park. The 
speed of the other two settings has little difference and 

even distribution in the height of 10m and below. Low 
wind speed areas are mainly distributed in the 
downwind direction of buildings. At a height of 5m, 
the wake generated by vegetation and buildings is 
more obvious. At the heights of 5m and 10m, the wind 
environment results of the three settings are similar. 

 

3.3 Acquisition of measured data 
 
The instruments used for the measured data are 

shown in Table 3. 
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Tab. 3 Introduction to measuring instruments 
Instrument category Instrument parameters 

testo 610 high-precision 

temperature & humidity 

 

temperature 
range：-10.0-50.0 ºC; 

accuracy：±0.5 

humidity 
range：0-100%RH; 

accuracy：±2.5%RH 

SW6086 Thermal 

anemometer 

 

temperature 
range：0.0-45.0 ºC; 

accuracy：±1.0 ºC 

风速 
range：0.0-30.0m/s; 

accuracy：±0.1m/s 

humidity 
range：0-99%RH; 

accuracy：±4.0%RH 

Outdoor electronic 

thermometer and 

hygrometer 

 

temperature 
range：-50.0-70.0 ºC; 

accuracy：±1.0 ºC 

humidity 
range：0-100%RH; 

accuracy：±2.5%RH 

 

3.4 Collection of experimental data 
 

Sort out the measured data and remove the 

abnormal values. Then, calculate the average of 
multiple groups of data measured at the same time as 
the final temperature data of the point. 

Through the collection of field measured 
temperature data, eight outdoor thermometers were 
used to record the temperature data at 1.2m in real 
time. The measuring points of different outdoor 
thermometers are distributed as shown in Figure 3. 

 

 
              (a)                  (b) 
Fig. 3 Measured data, distribution of measuring points 

(a), measured data of single measuring point (b) 
 

4.CONCLUSION 
 

Compare the temperature data of the measured 
measuring points with the simulation results, and the 
comparison results are shown in Figure 5. 

It can be seen from the comparison chart that the 

simulation results of the three settings are very close to 
the measured results, but the differences are reflected 

in different measuring points. Compared with other 
measuring points, the measured data of measuring 
points 4 and 5 are quite different from the simulated 
data. It is mainly because measuring points 1-3 and 
6-8 are located on the north and south sides near the 
edge of the park, while measuring points 4 and 5 are 
located inside the park, surrounded by many dense 

trees and roads, with complex ventilation and heat 
distribution, which leads to large differences between 
the two.  

From the perspective of different settings, the 
temperature simulation results obtained under the cold 
source setting mode are lower than the measured 
results. There is no obvious difference between the 
settings of porous media and wall and the simulation 

results. The root mean square error between the 
simulation results of different vegetation settings and 
the measured data was counted (Figure 6). The error 
from high to low was wall, porous medium and cold 
source. Therefore, in the simulation of urban wind and 
heat environment at the block scale, it is more 
appropriate to set the vegetation as the wall. 

 

 
     (a)            (b)             (c) 
Fig. 4 Field measurement 
 

 
Fig. 5 Comparison chart of results 

 

 
Fig. 6 RMSE comparison chart 
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ABSTRACT: The current research on urban heat island effect mostly focuses on the analysis of land use type 
changes, and most of them focus on the surface urban heat island effect. From the perspective of urban 
microclimate, the canopy heat island effect is a key factor affecting human thermal comfort. Therefore, this study 

will combine the local climate zone classification system and the UWG (Urban Weather Generator) model to 
simulate and quantitatively analyze the urban canopy heat island effect in Beijing at the block scale. First, based 
on Sentinel-2 Multispectral remote sensing images, the ResNet (residual neural network) method was used to 
obtain the local climate zone in Beijing, and the LCZ was verified based on the google earth engine (GEE) 
platform; Secondly, according to the classification results of local climate zones, the input parameters of the UWG 
model are calculated; Finally, the UWG model is used to simulate the canopy temperature in different local climate 
zones, and the urban canopy temperature is verified based on the meteorological station data. We quantitatively 
analyze the temperature differences between different types of local climate zones. The results shows that the 

canopy heat island effect in Beijing gradually weakened outward from the city center. This is mainly due to the 
relatively dense distribution of compact local climate zones in the center of Beijing, while the surrounding areas 
of Beijing have lower building density and better natural coverage. From the perspective of local climate zones, 
the heat island intensity of built-up LCZs is significantly stronger than that of natural-covered LCZs. The variation 
of the heat island intensity of each built-up type of LCZ shows a certain regularity, that is, the heat island intensity 
of the compact LCZ is higher than that of the open LCZ with the same building height. However, for LCZs with 
comparable compactness, the heat island intensity of high-level LCZs is higher than that of low-level LCZs. 
According to the conclusions drawn from this study, we hope to provide theoretical guidance for the sustainable 
and healthy development of Beijing and rational planning in the future. 

Keywords: Local climate zone, canopy urban heat island, urban weather generator, Sentinel-2 
 
 
1 INTRODUCTION 
 
Urbanization can greatly alter the form, fabric, structure 
and metabolism of the original landscape, thus 
changing the local climate. The universal urban heat 

island effect (UHI) has attracted extensive attention. 
The urban Heat island effect (UHI) refers to the fact that 
the screen height temperature in an urban area is 
significantly higher than the screen height temperature 
in the surrounding rural area. In order to make urban 
heat island effect studies more objective and 
standardized, Stewart and Oke proposed the concept of 
"local climate zones". It is defined as an area that spans 

hundreds to thousands of meters on a horizontal scale 
and has the same land cover, urban structure, materials, 

and similar human activities (Stewart and Oke, 2012; 
Stewart and Oke,2014). 
Based on this classification system, the calculation of 
urban heat island intensity is no longer the ambiguous 
urban-rural temperature difference, but the temperature 

difference of different LCZ categories (Stewart and 
Oke, 2014). The LCZ classification system provides a 
standard framework for urban heat island research. 
Therefore, a large number of scholars have studied the 
urban heat island effect based on the LCZ classification 
System (Stevan and Dragan et al, 2013). As for 
temperature data, the Urban Weather Generator (UWG) 
model generates meteorological information for 

specific urban areas based on known rural site data and 
urban morphology. This model has been widely used in 
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the study of urban spatial thermal environament 
(Martinez et al, 2021). 
Combined with previous studies, this paper will take the 
central urban area of Beijing as the main research area, 
and use LCZ classification system and UWG model to 
study the urban canopy heat island effect. The main 

contents include: ① the use of Sentinel-2 multispectral 
remote sensing data and ResNetV2 model to draw the 

LCZ distribution map of the study area. ② Based on the 

classification results, a representative site was selected 
for each LCZ category to calculate various surface 

parameters required by the UWG model. ③ The 
representative canopy temperature data of each LCZ 

category were obtained by running the UWG model 
using meteorological data and calculated land surface 
parameters. At the same time, the real meteorological 
data observed by the adjacent meteorological stations 

are used to verify. ④ Finally, the urban canopy heat 
island effect was studied based on the simulated 
temperature data. 
 
2 STUDY AREA AND DATA 
 

2.1 study area 
 
The study area of this paper is the central urban area of 
Beijing, namely Dongcheng District, Xicheng District, 
Haidian District, Chaoyang District, Shijingshan 
District and Fengtai District, as shown in Figure 1. 

 
Figure 1. Scope of the study area 
 

2.2 Data 
 

2.2.1 Remote sensing data 
 

In this paper, a standard dataset So2Sat LCZ42 in LCZ 

field is used to train the deep convolution model, The 
dataset consists of approximately 500,000 Sentinel-1 
and Sentinel-2 image patches and their LCZ labels from 
42 major urban sites worldwide (plus 10 additional 
smaller areas), with an overall confidence of 85% (Zhu 
X X et al, 2019). The specific training process is carried 
out using Sentinel-2 image patches in So2Sat LCZ42 
dataset. Therefore, after the training, the LCZ map of 

the study area is obtained using the preprocessed 
Sentinel-2 multispectral data. 
 

2.2.2 Vector data and Meteorological data 
 

Since the UWG model requires many city parameters, 

which are not consistent with the attribute indicators 
defined in the LCZ. Therefore, this paper will use the 
AOI data of the study area to calculate some parameters 
required by the UWG model that have a great impact on 
the simulation results, and the setting of other 
parameters will refer to the practices of other scholars 
in thermal environment simulation research using the 
LCZ classification system (Stewart et al, 2014).In 

addition, this paper uses the meteorological data of 
Shunyi meteorological station in Beijing in 2019 and 
Element software to generate the input file of UWG 
model. Meanwhile, in order to verify the simulation 
results of the UWG model, the meteorological data of 
meteorological stations in the central urban area of 
Beijing in 2019 were collected. 
 

3 METHODS AND RESULTS 
 

3.1 LCZ classification  
 

3.1.1 Classification network and model training 
 

Recent years, ResNet network and its variants have 
been used in many LCZ classification studies. The main 
feature of this network is the residual structure which is 
composed of identity mapping and shortcut connection 
(He et al, 2016). 

 
Figure 2. The architecture of the classification network 
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This paper uses an improved ResNetV2, whose specific 
network model is shown in Figure 2. When carrying out 
LCZ classification, the specific network training 
process refers to Qiu et al. 's experiment (Qiu et al, 
2020). The whole training process adopts keras 2.6.0 
framework to implement. 
 

3.1.2 LCZ classification results 
 

Figure 3 is the confusion matrix of the model adopted 
in this paper on the test set. The ResNetV2 model 
adopted in this paper achieves good classification 
accuracy in LCZ classification task. OA is 89.46%, 
while Kappa coefficient is 0.88. The classification 
accuracy of the model is high in the land cover type 
LCZs(LCZ A-LCZ G), while the classification 

accuracy is not high in the built type LCZs(LCZ 1-LCZ 
10).There was some confusion between LCZ 1 - LCZ 3 
and LCZ 4 - LCZ 6. It is mainly because the Sentinel-2 
multispectral data used in this paper contains a large 
amount of spectral information of ground objects, and 
contains less spatial structure information of ground 
objects, especially the height information is very lack. 

 
Figure 3. Confusion matrix of the study area 
 

After the model training is completed, this paper uses 
the sliding window method to draw the LCZ map of the 
study area according to Qiu et al., and the specific 
results are shown in figure 4 (Qiu et al., 2020). From 
the results, the LCZ map shows the overall urban 
structure characteristics of the central urban area of 

Beijing, and is consistent with the actual situation on 
the ground. The central urban area of Beijing presents a 
compact urban structure. The closer it is to the urban 
center, the more compact it is. The compactness 
gradually weakens from the downtown to the 
surrounding suburbs. The central area represented by 
the Palace Museum is mainly of the LCZ 3, with a small 
amount of LCZ G. Tightly surrounding the central area 
is the LCZ 4. In this range, LCZs of land cover type are 

relatively rare. Further looking outwards, LCZ 5 and 

LCZ 6 are the main LCZ types. At the same time, LCZ 
blocks with land cover types also gradually increased. 
LCZ A and LCZ D were the most common types in the 
suburbs of the study area. In conclusion, the overall 
urban structure of Beijing is crowded, and there is less 
green vegetation in the central area, which aggravates 
the urban heat island effect. 

 
Figure 4. Spatial distribution of LCZ in in the central 
urban area of Beijing 
 

3.2 UWG simulation  
 

3.2.1 UWG simulation fundamentals 
 

Bueno developed the UWG model using the Urban 
Energy Balance Model (TEB) based on Building 
Energy Model (BEM), which rapidly generates local 
microclimates based on meteorological information 
from rural sites and site-specific urban characteristics 
(Bueno et al, 2013). UWG processes suburban to urban 
meteorological information through four modules to 

obtain the wind-thermal environment at a specific block 
scale. The four main modules are Rural station model 
(RSM), Vertical Diffusion Model (VDM), Urban 
Boundary Level (UBL), Urban Canopy-Building 
Energy Model (UC-BEM). The whole UWG simulation 
process is shown in Figure 5. 

 
Figure 5. Simulation flow of UWG model 
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3.2.2 UWG simulation results 
 
According to the spatial distribution of LCZ in the study 
area, representative sites were selected for each LCZ 
type to obtain the input parameters needed for the UWG 
simulation. In this paper, the Dragonfly plugin in 
Grasshopper was used to run the UWG model to obtain 

the simulated temperature values of each LCZ type for 
the whole year of 2019.At the same time, the real 
temperature values observed by the adjacent 
meteorological stations are selected to verify the 
accuracy of the UWG simulation. In this paper, two 
periods, from January 14 to January 15 in the winter of 
2019 and from July 14 to July 15 in the summer of 
2019, were selected as typical research periods. The 

prediction accuracy of UWG model is evaluated 
quantitatively by using R2 and RMSE. 
 
According to Table 1, the UWG simulation results of 
each LCZ category achieved satisfactory accuracy on 
the whole. For most LCZ types, the UWG simulation 
results in summer were significantly better than those 
in winter for most LCZ blocks. The reason for the poor 

simulation results in winter may be related to the more 
complex meteorological and heating factors in the 
central urban area of Beijing in winter. Then from the 
perspective of space, except for LCZ 3, the UWG 
simulation results of LCZ blocks with built-up types 
were better than those of LCZ blocks with land cover 
types. The simulation accuracy of LCZ 3 is not high, 
because LCZ 3 types are mainly distributed in the 

center of Beijing, and a small amount of LCZ G is 
distributed in this area. These blocks differ greatly in 
urban climatology. 
 

3.3 Heat island intensity calculation  
 
A large number of scholars used the UHI magnitude to 
characterize the heat island effect in the study area. The 
specific calculation process of the UHI magnitude 
based on LCZ classification system is shown in 
equation 1. 

 

UHILCZ X = 𝑇𝐿𝐶𝑍 𝑋 − 𝑇𝐿𝐶𝑍 𝐷              Equation 1 

Where, UHI(LCZ X) refers to the magnitude of UHI for 

LCZ X(LCZ X Denotes any type of LCZ),T(LCZ X) 

denotes the temperature of the LCZ X, T(LCZ D) denotes 
the temperature of the LCZ X. 
After obtaining the UHI magnitude of each LCZ block, 
Arcgis software and its Python programming interface 
were used to draw the daytime UHI magnitude map and 
nighttime UHI magnitude map of the study area, as 
shown in Figure 6. From the perspective of time, 

nighttime UHI magnitude is generally stronger than 
daytime UHI magnitude. From the perspective of space, 
the distribution of UHI magnitude during the daytime 
is basically consistent with that at night. The area with 
the highest UHI magnitude in Beijing is the area 
between the Second Ring Road and the Third Ring 
Road. There are many high-rise buildings in these areas, 
and the flow of people is large. Therefore, the UHI 

effect is most obvious. However, the UHI magnitude in 
the central area represented by the Palace Museum has 
weakened, mainly because there are a small number of 
LCZ G in these areas, and this LCZ type have a certain 
cooling effect, which alleviates the UHI effect in the 
central area. In a word, the UHI magnitude of the outer 
ring of Beijing is lower than that of the inner ring of 
Beijing. 

Table 1 Accuracy evaluation table of temperature simulation result of LCZ Blocks in Typical Study Period 

Built types Land cover types 

Classes Seasons R2 RMSE Classes Seasons R2 RMSE 

LCZ 1 
winter 0.84  1.50  

LCZ A 
winter 0.74  3.14  

summer 0.76  2.17  summer 0.76  2.32  

LCZ 2 
winter 0.86  1.50  

LCZ B 
winter 0.84  0.84  

summer 0.80  1.92  summer 0.95  0.87  

LCZ 3 
winter 0.75  1.97  

LCZ C 
winter 0.69  2.94  

summer 0.65  2.67  summer 0.84  1.75  

LCZ 4 
winter 0.92  1.31  

LCZ D 
winter 0.85  1.81  

summer 0.92  1.09  summer 0.91  1.19  

LCZ 5 
winter 0.80  1.78  

LCZ E 
winter 0.90  1.32  

summer 0.84  1.53  summer 0.94  0.88  

LCZ 6 
winter 0.86  1.78  

LCZ F 
winter 0.74  2.71  

summer 0.93  0.85  summer 0.80  1.91  

LCZ 8 
winter 0.89  1.38  

LCZ G 
winter 0.88  1.44  

summer 0.89  1.49  summer 0.70  2.16  

LCZ 9 
winter 0.92  1.23      

summer 0.93  0.97      

LCZ 10 
winter 0.71  2.55      

summer 0.80  2.08      
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Figure 6. Spatial distribution of daytime heat island 
intensity(up) and nighttime heat island intensity(down) 
in the study area 
 
4 CONCLUSIONS 
 

The results of this paper show that: (1) High 
classification accuracy can be obtained by using CNN 
network for LCZ classification research. For some built 
type LCZs, the main difference lies in spatial structure, 
so adding data that can reflect the features of spatial 
structure can further improve the classification 
accuracy. (2) The temperature of the built type LCZs is 
generally higher than that of the land cover LCZs. The 

temperature of the inner ring of Beijing, with LCZ 3 and 
LCZ 4 as the main LCZ types, is generally higher than 
that of the outer ring of Beijing. (3) The nighttime UHI 
magnitude of the city is higher than the daytime UHI 
magnitude of the city. (4) The government should 
formulate reasonable land use and urban development 
plans. Land cover type LCZs is beneficial to alleviate 
UHI effect. 
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ABSTRACT - Rapid urbanization has led to many urban thermal environment problems, among which the 
increasing urban heat island effect has been widely concerned by people, and has become one of the most 

prominent features of climate change in the process of global urbanization. At present, most scholars at home and 
abroad study and analyze the urban heat island effect from the perspective of land use type, with a large scale, 
and lack of research from the level of urban microclimate spatial scale. Therefore, from the small-scale perspective 
of different land-use attributes, it becomes the focus of this paper to study the typical outdoor microclimate of each 
land-use attribute. Urban functional zone (UFZ) refers to urban planning units with similar spectral 
characteristics and socio-economic functions, which often have similar energy consumption and outdoor thermal 
environment. The urban weather generator (UWG) model has good performance in Urban Microclimate 
Simulation, low computational load and high efficiency. In this paper, the UWG model is used to quantitatively 

analyze the spatial thermal environment of Beijing. In order to more accurately simulate the urban thermal 
environment, the underlying surface used in the simulation is replaced by the finely classified underlying surface 
of the urban functional area. In this paper, we first use POI + OSM data to divide the functional areas of Beijing, 
then use UWG model to simulate the temperature and humidity differences in different functional areas, and finally 
use the corresponding urban and rural weather stations to verify. Through UWG simulation and analysis of the 
thermal environment differences of different functional areas, we can deeply understand the thermal environment 
characteristics, impact factors and mitigation measures of Beijing, which is of great significance to the sustainable 
and healthy development of the city and reasonable planning in the future. 
Keywords:Urban functional zone,Urban air temperature,canopy urban heat island,UWG. 

 
 
1.INTRODUCTION 
 
The continuous advancement of urbanization in the 
world has resulted in many thermal environmental 
problems such as reduced urban air quality, increased 
demand for heating and cooling loads in buildings, and 

deteriorating health status of urban residents, which 
seriously affects the sustainable development of cities. 
Therefore, how to understand the urban thermal 
environment on a finer scale, and propose thermal 
environment mitigation measures are the focus and 
difficulty of current research. 
Urban thermal environment refers to the physical 
environment related to heat that can affect the human 

body's perception of cold and warmth, health level, and 
human survival and development (Oak T R. 1995). At 
present, there are various research methods for thermal 
environment. Among them, urban meteorological 
generator (UWG), as a quantitative method of urban 
spatial thermal environment, has achieved many 

research results. It is worth pointing out that this paper 
uses high-resolution remote sensing data and GIS 
technology to provide accurate data sources for the 
initial condition input of the UWG model. At the same 
time, taking temperature as the optimization target, the 
12 uncertain parameters that greatly affect the 
simulation results are calibrated, and the corrected 
model error is smaller. 
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For cities and urban agglomerations with complex land, 
the thermal environment simulation directly based on 
UWG considers that the fineness of the underlying 
surface is not enough, it cannot fully reflect the pattern 
and intensity of the urban heat island, and the 
simulation accuracy is not high. Therefore, it is very 
necessary to finely classify the urban underlying 

surface and comprehensively obtain the UWG thermal 
environment simulation results of the city. As the basic 
unit of the rapid development of modern cities, urban 
functional areas can help understand the complex 
interaction between human spatial activities and 
environmental changes (Zhong et al. 2015, Leichtle et 
al. 2017), and have important economic, social and 
ecological implications for cities Impact. In this study, 

the spatial temperature field under different urban 
functional areas is simulated by the UWG model, which 
can deeply understand the interaction mechanism 
between the underlying surface and the thermal 
environment, improve the accuracy of the UWG 
simulation, and deepen the understanding of the urban 
thermal environment on a finer scale. 
This study considers the spatial and temporal 

distribution of urban thermal environment under 
different functional areas, and mainly carries out two 

aspects of work: ①Using POI+OSM data to divide the 

urban functional areas of the central city of Beijing, 

which are mainly divided into six single functional 
areas, including roads and traffic areas, industrial areas, 
public areas, residential areas, green space and square 
areas, and commercial areas, as well as a combination 

functional area; ②Using the dragonfly plug-in of 

grasshopper modeling software, run the UWG model to 
simulate the thermal environment, and obtain the 
thermal environment simulation results under each 
functional area. According to the distribution pattern of 
functional areas in the center of Beijing, this paper 
discusses the temperature field, living environment and 
heat island situation of the city, and proposes measures 

and methods to improve the urban thermal 
environment. 
 
2.STUDY AREA AND METHODS 
 
This section mainly carries out the verification analysis 
of the identification results of urban functional areas 
and the simulation results of UWG canopy temperature. 
First, according to the identification results of 

functional areas, we obtained the spatial distribution 
characteristics of single functional areas and complex 
functional areas in Beijing, and used the accuracy rate 
acc to quantitatively evaluate the identification 
accuracy of functional areas. Then, running the UWG 
model for simulation based on the functional area 
identification, we obtained the canopy temperature and 
relative humidity of each functional area. The 

temperature differences between functional zones of 
the same type and between different types were 
compared and analyzed using two typical seasons, 
summer and winter, and the model accuracy was 
evaluated by the coefficient of determination R2 and the 
RMSE. 
 

2.1 Study area 
 

The research areas of this paper are Dongcheng District, 
Xicheng District, Chaoyang District, Haidian District, 
Shijingshan District, and Fengtai District in Beijing. As 
shown in Figure 1. 

 
Figure 1. Study area: six urban areas in central Beijing 
 

2.2 Identification and Verification of Urban Functional 
Areas 
 

According to statistics, there are 6 types of single 
functional areas and 15 types of mixed functional areas 
in the central urban area of Beijing. Among them, the 
single functional area is dominated by road traffic land, 
and residential land accounts for the least. The 
composite functional area is dominated by public-
transportation land, and green space-industrial land is 
the least. The specific functional area division results 

are shown in Figure 2. 
In order to verify the accuracy of the identification 
results of urban functional areas, Google Maps was 
manually visually interpreted and field research was 
conducted to obtain the true values. The identification 
results of functional areas were used as predicted 
values, and 30 block units were randomly selected for 
comparative analysis. Referring to the research of Kang 

and Ding (Kang Y et all 2018, Ding Y et all 2020), the 
overall accuracy rate was 85.6% using the expert 
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scoring method, indicating that this study can 
effectively identify single functional areas, mixed 
functional areas and comprehensive land use Ribbon. 

 
Figure 2. Recognition results of functional areas in the 
central urban area of Beijing 
 

2.3 Verification and Analysis of UWG Temperature 
and Humidity Simulation Results 
 

According to the obtained UWG simulation parameters, 
this paper uses the Dragonfly plug-in in Grasshopper to 
run the UWG model, and obtains the temperature and 
humidity prediction results of each functional area, 
selecting July 21-July 22 in summer and January 21-
January 22 in winter. Day is a typical study period.  
 

2.3.1 UWG Simulation Fundamentals 
 
The UWG model consists of four coupling modules, 
through which UWG processes the information from 
suburban sites to urban sites, thereby obtaining the 
urban thermal environment of a specific area.The four 

main modules include the Rural Station Model (RSM), 
Vertical Diffusion Model (VDM), Urban Boundary 
Layer Model (UBL), Urban Canopy and Building 
Energy Model (UC-BEM) (Bueno Unzeta, Bruno. 
2012, Bueno, Bruno, et al. 2013). Figure 3 shows the 
simulation process of the UWG model: the UWG 
model takes the meteorological data provided by the 
*.epw rural weather file as the initial input, and changes 

the temperature, relative humidity and wind speed 
according to the urban characteristics described in the 
*.uwg file to generate *.epw simulation City Weather 
File. 

 
Figure 3. Simulation flow of UWG model 
 

①RSM mainly reads the meteorological data measured 

hourly at the suburban sites, calculates the sensible heat 
flux of the suburban sites through the surface energy 
balance, and provides it to VDM and UBL. The model 
represents the heat transfer process by dividing the soil 

into discrete layers and solving a finite difference 
system of equations : 

d1(ρc)1
∂T1

∂t
= C1,2(T2 − T1) + Qsurf   

For the first layer i: 

di(ρc)i
∂Ti

∂t
= Ci,i+1(Ti+1− Ti) + Ci,i−1(Ti−1− Ti)   

For any intermediate layer n: 

dn−1(ρc)n−1
∂Tn−1

∂t
= Cn−1,n(Tdeep −Tn−1)  

②The VDM reads the temperature, humidity, and 

sensible heat flux provided by the RSM, calculates the 

air temperature at different heights above the rural site 
through the heat diffusion equation, and provides it to 
the UBL. The heat diffusion equation is as follows: 
 

𝜕𝜃(𝑧)

𝜕𝑡
= −

1

𝜌(𝑧)

𝜕

𝜕𝑧
(𝜌(𝑧)𝐾𝑑(𝑧)

𝜕𝜃(𝑧)

𝜕𝑧
) 

③According to the temperature at different heights 

provided by VDM and the sensible heat flux provided 
by RSM, the UBL model calculates the air temperature 
above the urban canopy to UC-BEM through energy 
balance. The energy balance is expressed as: 
 

𝑉𝑐𝑣𝜌𝑐𝑣
𝑑𝜃𝑢𝑟𝑏
𝑑𝑡

= 𝐻𝑢𝑟𝑏 + ∫ 𝑢𝑟𝑒𝑓𝜌𝑐𝑝(𝜃𝑟𝑒𝑓 − 𝜃𝑢𝑟𝑏)𝑑𝐴𝑓 
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④UC-BEM calculates air temperature and humidity in 

urban canyons through town energy balance and 

building energy models, while providing urban sensible 
heat flux and urban canyon air temperature and 
humidity for UBL. The urban canyon energy balance is 
as follows: 

𝑉𝑐𝑎𝑛𝜌𝑐𝑣
𝑑𝑇𝑢𝑟𝑏
𝑑𝑡

= 𝐴𝑤ℎ𝑤(𝑇𝑤 − 𝑇𝑢𝑟𝑏)

+ 𝐴𝑟ℎ𝑟(𝑇𝑟 − 𝑇𝑢𝑟𝑏)

+ 𝐴𝑟ℎ𝑟𝑑,𝑠𝑘𝑟(𝑇𝑠𝑘𝑟 − 𝑇𝑢𝑟𝑏)

+ 𝐴𝑤𝑖𝑛𝑈𝑤𝑖𝑛(𝑇𝑖𝑛 − 𝑇𝑢𝑟𝑏)

+ 𝑉𝑖𝑛𝑓/𝑣𝑒𝑛𝑡𝜌𝑐𝑝(𝑇𝑖𝑛 − 𝑇𝑢𝑟𝑏)

+ 𝑢𝑒𝑥𝜌𝑐𝑝(𝑇𝑢𝑏𝑙 − 𝑇𝑢𝑟𝑏)

+ 𝐻𝑤𝑎𝑠𝑡𝑒 + 𝐻𝑡𝑟𝑎𝑓𝑓𝑖𝑐  

2.3.2 Analysis of UWG Simulation Results of Different 
Types of Functional Areas 
 
Different types of functional areas have different 
building morphological parameters, vegetation 
coverage parameters, and anthropogenic thermal 
parameters. Using the UWG model to explore the 

thermal environment differences in different urban 
functional areas can improve the simulation accuracy of 
the UWG model. Figure 4 shows the temperature 
prediction results of different functional areas in winter, 
and Figure 5 shows the temperature prediction results 
of different functional areas in summer. Figure 6 shows 
the difference in heat island intensity between 
functional areas during the day and night in summer. 
Table 1 quantitatively evaluates the prediction accuracy 

of the UWG model with R2 and RMSE. 

From the measured values of meteorological stations in 
the study area, it can be found that the temperature in 
the outer ring of Beijing is generally lower than that in 
the inner ring, and the heat island effect in the city 
center is serious. The daily variation of the average 
temperature is about 10℃, and the temperature 
variation of the measured meteorological stations in 

different functional areas is not very different. Judging 
from the UWG simulation results, the simulation data 
has good simulation results in the trend of temperature 
change, the individual high temperature and low 
temperature simulation results are not ideal, and the 
temperature changes between functional areas are not 
very different. 
 

Table 1. Evaluation table of temperature simulation 
accuracy of each functional area 

Urban functional area 
category 

R2 RMSE 

Public 
services land 

Summer 0.77 1.87 

Winter 0.72 2.29 

Commercial 
land 

Summer 0.88 1.44 

Winter 0.70 2.35 

Residential 
land 

Summer 0.90 1.32 

Winter 0.68 2.66 

Industrial land Summer 0.66 2.79 

Winter 0.60 2.54 

Green spaces 
land 

Summer 0.78 1.87 

Winter 0.72 2.07 

Roads traffic 
land 

Summer 0.77 1.84 

Winter 0.61 2.23 

 
 

 

Figure 4. The temperature of each functional area from January 21st to January 22nd in winter 
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Figure 5. The temperature of each functional area from July 21st to July 22nd in summer 
 
From the temperature simulation accuracy evaluation 
table, it can be seen that the order of R2 from high to 
low is: residential land > commercial land > green space 
and square > public land > road and traffic > industrial 
land. It shows that the UWG model has a good fitting 

effect on the temperature prediction of residential land 
and commercial land, but has a poor fitting effect on the 
temperature prediction of industrial land. The order of 
RMSE from low to high is: commercial 
land>residential land>green space and square>road and 
traffic>public land>industrial land, indicating that the 
UWG model has high temperature prediction accuracy 
for residential land and commercial land, but low 
prediction accuracy for industrial land. The R2 in 

summer is significantly higher than that in winter, and 
the RMSE in summer is significantly lower than that in 
winter, indicating that the temperature prediction 
performance of the UWG model in summer is better 
than that in winter, and the poor prediction effect in 
winter may be related to meteorological factors and 
heating. The reason for the poor prediction effect on 
industrial land may be that industrial production 

consumes a lot of energy to release heat energy, while 
UWG considers the relationship between buildings and 
thermal environment more. At the same time, the 
verified meteorological station has a certain distance 
from the industrial land, which cannot represent the 
thermal environment of the specific industrial park, and 
will also have a certain impact on the simulation results.  
From the perspective of land use attributes, UWG 

simulation obtains that the temperature of the functional 
area from high to low is: industrial area > commercial 
area > residential area > public area > road and traffic 

area > green space and square area. Industrial 
production releases a lot of heat energy, and the 
existence of industrial areas will increase the heat island 
effect in the area; Vegetation and water bodies have a 
cooling effect, and the existence of green space square 

area will alleviate the heat island effect in this area.  
 
2.3.3 Analysis of UWG simulation results of the same 
type of functional area 
 
From the UWG thermal environment simulation results 
of different types of functional areas, it can be seen that 
the model has the best prediction effect on residential 
land in summer. In order to explore the thermal 

environment differences between the same type of 
functional areas, this paper takes residential blocks as 
an example, and simulates and analyzes the temperature 
and humidity of the residential land single functional 
area and the residential land composite functional area 
with similar urban geometry. Figure 7 shows the 
summer temperature prediction results for residential 
single-functional zone plots and multi-functional zone 

plots located in different locations. 
For an urban area, UWG describes it by three key 
geometric parameters: average building height, site 
building density, and the façade-horizontal ratio. These 
parameters transform the complex, heterogeneous 
urban structure into a homogeneous description defined 
by the town energy balance (TEB) (Bueno et al. 2013). 
It can be seen from the simulation results in Fig. 7 that 

the thermal environment simulation results of 
residential areas located in different locations are 
basically the same, and there are slight differences at 
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the high and low temperature peaks; The temperature 
simulation results of the single functional area and the 
composite functional area of residential land are not 
significantly different, and the residential-
transportation land is slightly higher than that of other 
functional areas, because the residential-transportation 
land generates more anthropogenic heat rise during the 

commute time. Therefore, for plots with similar urban 
geometry, underlying surface type and anthropogenic 
heat, the UWG model obtains similar thermal 
environment simulation results. 
 

 
Figure 7. Temperature prediction results for single-

functional and multi-functional plots in residential 
areas 
 
3. CONCLUSIONS  
 
This paper divides the functional areas of Beijing based 
on the POI+OSM method, uses the UWG model to 
simulate the temperature and humidity differences in 

different functional areas, and finally uses the 
corresponding urban and rural meteorological stations 
to verify the temperature and humidity. The simulation 
results show that: (1) The canopy temperature of 
different urban functional areas from high to low are: 
industrial area > commercial area > residential area > 
public area > road and traffic area > green space and 
square area;(2) The temperature of high and dense 

building land is generally higher, the existence of 
industrial areas and commercial areas will increase the 
heat island effect in this area, and the existence of green 
space square area will alleviate the heat island effect in 
this area; (3) The UWG model is more suitable for 
summer thermal environment simulation, and has 
higher prediction accuracy for commercial land and 
residential land, and is not suitable for industrial land 
simulation. 

In the future, high albedo (reflectivity) roofs and 
pavements, porous/permeable pavements, open mesh 
pavements, etc., can be used to replace existing building 
materials. The lack of urban vegetation will further 
exacerbate the UHI effect. Increasing the green space 
through landscape design is an effective way to improve 
the microclimate and outdoor thermal comfort. The 

anthropogenic heat emission of vehicles is an additional 
source of urban energy balance and contributes to the 
UHI effect. In the future, mixed functional areas should 
be reasonably developed according to needs, reducing 
single land use types and further improving land use 
efficiency.  
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ABSTRACT - Chinese modern gardens combine the main design concepts of classical gardens, and integrate 
people's aesthetics and the sustainable development of the city into the design scheme, which has a good effect on 
improving the local microclimate of the city. Therefore, it is of great significance to study the wind and heat 
environment layout of Chinese modern gardens to quantify the impact of local microclimate in cities. To this end, 
based on high-resolution remote sensing data and computational fluid dynamics, this study simulates the wind-
thermal environment of modern gardens in northern and southern China. Firstly, based on high-resolution remote 

sensing data, combined with 3D modeling software to create a garden geometric model; Secondly, the created 
geometric model is gridded, the boundary conditions are set according to the collected meteorological data and 
the measured underlying surface data, and the SST turbulence model and the Couple algorithm are used for 
numerical calculation; Finally, the accuracy of the simulation results is verified by the results of field 
measurements. It mainly simulates Jingsi Garden, a modern garden in southern China, and Taoranting Park, a 
modern garden in the north, to analyze the impact of modern gardens in different locations and their layout and 
shape on the urban space wind and heat environment. The simulation results show that the cooling effect of 
Taoranting Park with large green space, large water body and meandering boundary of the park is better than 

that of Jingsi Garden with a relatively small boundary aspect ratio, and can provide a comfortable wind-heat 
environment in and around the garden. 
 
 
1 INTRODUCTION 
 

With the continuous acceleration of urbanization, the 

natural surface of the city is replaced by a large number 
of artificial surfaces with poor water permeability, 
which deteriorates the wind-heat environment inside 
the city and leads to serious wind-heat environment 
problems (Huo et al.2021; Du et al. 2022; Huo et al. 
2022). Urban landscape architecture can effectively 
alleviate the wind and heat environment in local areas 
and provide residents with a comfortable outdoor 

environment (Fallahpour et al.2022). Due to the 
differences between the northern and southern climates 
and the spatial layout of modern gardens, studying the 
mitigation effects of different modern gardens in the 
north and the south on the local wind-heat environment 
can effectively solve the deteriorating wind-heat 
environment. 

Landscape gardens in cities have a large number of 
"cold sources" such as water bodies and green plants 
(Gromke et al.2014; Tominage et al.2015). Among 
them, the evaporative cooling effect of the water body 
can reduce the surrounding air temperature and increase 

the wind speed very well, especially the cooling effect 
along the wind direction downstream of the water body 
is outstanding. As a natural surface, the temperature of 
green plants is lower than that of artificial surfaces, and 
the biological effect of vegetation can well reduce the 
surrounding temperature and provide a comfortable 
wind-heat environment for local areas. For the study of 
wind-heat environment, on-site measurement, physical 

experiment and numerical simulation methods can 
generally be used. Traditional on-site measurement and 
physical experiment methods require a lot of 
manpower, The periodicity is long, and the continuous 
temperature field and wind speed field in the study area 
cannot be obtained, so the numerical simulation method 
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has become the main method to study the wind and heat 
environment in the local area of the city (Zeng et 
al.2020; Antoniou et al.2019; Li et al.2008). 
This paper mainly uses computational fluid dynamics 
(CFD) to simulate the mitigation effect of gardens in 
different regions and layouts in northern and southern 
China on the surrounding air temperature. The 

geometric model of the study area is established based 
on the high-resolution remote sensing images, and the 
field measured data and meteorological data are used as 
the boundary conditions and verification methods of the 
simulation experiments. This study is divided into four 
parts, the second part, the CFD numerical experiment, 
the third part, the analysis and discussion of the 
simulation results, and finally the paper is summarized. 
 

2 CFD NUMERICAL EXPERIMENT 
 

2.1 Study area and computational domain 
 

Taoranting Park in the north and Jingsi Garden in the 
south were selected as study areas, located in Xicheng 
District, Beijing, China, and Wujiang District, Suzhou 
City, Jiangsu Province, China, with a range of 
116°22′05″– 116°22′54″E, 39°52′10″–39°53′17″N and 
120°41′15″– 120°41′55″E, 31°09′37″–31°09′57″N. 

Beijing has a typical temperate semi-humid continental 
monsoon climate, with an average annual temperature 
of 19°C and an average annual precipitation of 644mm. 
Suzhou is located in the northern subtropical humid 
monsoon climate zone. The average temperature in 
August 2020 is 22°C and the average annual 
precipitation is 1094mm. On the basis of high-
resolution remote sensing satellite images, a certain 

reasonable simplification is used to establish a 
geometric model containing various real underlying 
surfaces such as trees and water bodies, and a 
computational domain is created according to 
regulations. The study area and computational domain 
are shown in Figures 1a and 1b. 
 

2.2 Research methods 
 

CFD was used to simulate the impact of urban 
landscape architecture on the surrounding wind and 
heat environment. By establishing a three-dimensional 
geometric model of the urban research area, setting up 
the computational domain of the numerical experiment 

according to the specific research area, numerically 
discretizing the computational domain, selecting the 
SST turbulence model, using the Couple algorithm to 
couple the flow equation and the energy equation, and 
solving the numerical solution. This paper simulates the 
wind and heat environment around Taoranting Park in 
Beijing at 2:00 p.m. on September 18, 2022, and uses 
the measured data to verify it to ensure the reliability of 

the simulation results; And simulate the wind and heat 

environment around Jingsi Garden in Suzhou at 2:00 
p.m. on August 2, 2020. The specific technical route of 
this study is shown in Figure 2. 

 
(a) 

 
(b) 

Figure 1 (a) The left image is a high-resolution remote 
sensing satellite image of Taoranting Park, and the 
right image is the calculation area of Taoranting Park.  
(b) The left picture is the high-resolution remote 

sensing satellite image of Jingsi Garden, and the right 
picture is the calculation area of Jingsi Garden. 

 
Figure 2. Research Technology Roadmap 
 
2.3 Basic principles of CFD simulation 

 
Using CFD to simulate the local area wind and heat 
environment is generally to solve the Navier-Stokes 
equation of the incompressible and viscous fluid in 
three-dimensional space, while coupling the energy 
equation of the heat transfer effect. The relevant control 
equations are as follows: 
Continuous equation: 
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ρ is the fluid density, The unit is kg/m3;       
t is time, the unit is s;         

ui and uj are velocity components, The unit is m/s ;  
xi and xj are the coordinate components, The unit is m;  
p is the pressure on the fluid micro-body, The unit is Pa;  
Fi is the volume force on the micro-element body, The 
unit is N  
µ is the dynamic viscosity, The unit is (N·s)/m2 ;  
T is the temperature, The unit is ºC; 

κ is the heat transfer coefficient of the fluid, The unit 

is W/(m·K) ;  
cp is the specific heat capacity, The unit is (kJ·Kg)/ºC;            
ST is the energy source term;   
 

3 NUMERICAL EXPERIMNT RESULTS 
ANALYSIS AND VERIFICATION 
 
3.1 Analysis of Numerical Experiment Results 
 
CFD simulation method was used to study the 
mitigation effect of urban gardens on the surrounding 
wind and heat environment. The influence intensity and 

cooling mechanism of landscape gardens in the city are 
related to the basic constituent factors inside the garden, 
such as the size of the "cold source" such as water and 
vegetation, the complexity of the shape, the size of the 
garden and the spatial layout and other factors. This 
paper mainly studies the influence of modern gardens 
in the north and south on the surrounding wind and heat 
environment, such as Taoranting Park in the north and 

Jingsi Garden in the south. The area of Beijing 
Taoranting Park is larger than that of Suzhou Jingsi 
Garden, and the water area is larger. We mainly analyze 
the temperature and wind speed at a distance of 1.5m 
from the ground, because this affects the outdoor 
comfort and physical and mental health of residents. 
The simulation results of Taoranting Park show that 
Figure 3a shows that due to the low wind speed on the 
day, the large water area and green space coverage of 

Taoranting Park, and the complex boundary shape of 
the park, it has a mitigation effect on the temperature 
within about 200m, wide and spread to all boundaries 
of the park. Figure 3b shows that four temperature lines 
in the downwind direction within 200m from the park 

boundary are randomly selected from the overall park 
temperature field,the distance from the park boundary 
is the abscissa and the temperature is the ordinate, it is 
used to quantitatively analyze the mitigation effect of 
Taoranting Park on the surrounding temperature. Figure 
3b shows that when the distance from the park exceeds 
200m, the mitigation effect of temperature gradually 

decreases until it disappears; with the distance from the 
boundary, the cooling effect gradually slows down, and 
the maximum temperature can be reduced by more than 
4°C. Figure 4 shows the simulated wind speed field in 
Taoranting Park. Because of the lower trees and fewer 
houses in the park, the obstruction to the wind speed is 
small, and the overall wind speed in the park does not 
decrease significantly. 

 

(a) 
 

(b) 
Figure 3 (a) Temperature field at 1.5m in Taoranting 
Park        (b) Temperature variation downwind from the 
park boundary 
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Figure 4 Velocity field at 1.5m in Taoranting Park 

 
The simulation results of the Jingsi Garden show that 
Figure 5a shows that the wind speed of the simulated 
Jingsi Garden was relatively large on that day, and the 
wind speed had a certain influence on the distribution 
of the temperature field. Therefore, two regions with 
large temperature difference in the overall temperature 
field were selected for quantitative analysis. Figure 5b 

shows that in the downwind direction with large green 
space coverage and few buildings, the temperature 
reduction range is wide and the effect is obvious; On 
the contrary, in the downwind direction with dense 
buildings, the temperature has increased, and the 
influence range is about 200m. On the whole, the 
temperature changes by about 1°C in the downwind 
direction, and there is no obvious cooling effect around 

other boundaries. This result may be due to factors such 
as the small area of Jingsi Garden, the relatively small 
area of water and green space, and the large number of 
buildings. Figure 6 shows the wind speed field of Jingsi 
Garden. Due to the relatively dense buildings, the wind 
speed in the whole garden is seriously reduced, 
especially at the wake of the building.  
From the simulation results of wind and heat fields of 

Taoranting and Jingsi Garden, it can be concluded that 
Taoranting Park, which has a large area and a relatively 
large area of green space and water body, has a good 
temperature mitigation effect at a height of 1.5m, and 
the mitigation range is wide. Compared with the Jingsi 
Garden, which covers a relatively small area of water 
and green space, its effect on the surrounding 
temperature is poor, and the scope is also limited to the 

downward direction of the garden. Therefore, the 
cooling effect of Taoranting Park in the north is better 
than that of Jingsi Garden in the south, and it creates a 

more comfortable outdoor environment for nearby 
residents. 

(a) 

(b) 
Figure 5 (a) Temperature field at 1.5m from Jingsi 

Garden    (b) Temperature variation downwind from the 
park boundary 
 

 
Figure 6 Velocity field at 1.5m from Jingsi Garden 
 
3.2 Verification of Numerical Experiment Results 
 

On September 18, 2022, Taoranting Park will be 
measured on the spot. The selection of measurement 
points is shown in Figure 7. The temperature measured 
in the field at 1.5m was compared with the results of the 
CFD simulation. Figure 8 shows that the temperature 
difference between the measurement points 2, 3 and 4 

is not much different. The temperature difference 
between the measurement points 1, 5 and 6 is relatively 

   125 



large, but the temperature difference does not exceed 1 
°C. The root mean square error (RMSE) analysis was 
carried out with the measured data and simulated data, 
and the root mean square error was 0.48377, indicating 
that the CFD simulation results have high accuracy and 
can be used to analyze the mitigation effect of urban 
gardens on the surrounding wind and heat environment. 

 

 
Fig. 7 Marking map of measured points 
 

 
Fig.8 Verification of air temperature at 1.5m 
 
4 CONCLUSION 

 
This study mainly uses the CFD method to simulate the 
wind and heat environment of different garden layouts 
in the north and south of China, and the mitigation 
effect of the urban interior landscape gardens with 
different spatial layouts on the surrounding wind and 
heat environment. High-resolution remote sensing data 
and measured data are used as boundary conditions and 

verification methods for CFD numerical experiments. 
Taoranting Park in the north has a better effect on the 
degree and scope of the surrounding temperature 
reduction than the Jingsi Garden in the south. Among 
them, the surrounding temperature of each boundary of 
Taoranting Park has been relieved, and the mitigation 
range involves more than 200m, and the maximum 
temperature can be lowered by more than 4°C. 

Therefore, the thermal comfort of residents around 

Taoranting Park in the north is better than that of Jingsi 
Garden in the south. 
5 REFERENCES 

Huo, H.; Chen, F.; Geng, X.; Tao, J.; Liu, Z.; Zhang, 
W.; Leng, P. Simulation of the Urban Space 
Thermal Environment Based on Computational 
Fluid Dynamics: A Comprehensive Review. 
Sensors 2021, 21, 6898. 
https://doi.org/10.3390/s21206898. 

Du, S.; Zhang, X.; Jin, X.; Zhou, X.; Shi, X. A review 
of multi-scale modelling, assessment, and 
improvement methods of the urban thermal and 
wind environment. Building and Environment 
213 (2022) 108860. 
 https://doi.org/10.1016/j.buildenv.2022.108860 

Huo, H.; Chen, F. A Study of Simulation of the Urban 
Space 3D Temperature Field at a Community 
Scale Based on High-Resolution Remote Sensing 
and CFD. remote sensing 2022, 14, 3174. 

https://doi.org/10.3390/rs14133174. 

Fallahpour, M.; Aghamolaei, R.; Zhang, R. ; Mirzaei ,P. 
Outdoor thermal comfort in urban 
neighbourhoods by coupling of building energy 

simulation and computational fluid dynamics. 
Building and Environment 2022, 10, 
9599.https://doi.org/10.1016/j.buildenv.2022.109599 

Gromke, C.; Blocken, B.; Janssen, W.; Merema, B.; van 
Hooff, T.; Timmermans, H. CFD analysis of 
transpirational cooling by vegetation: Case study 
for specific meteorological conditions during a 
heat wave in Arnhem, Netherlands. Build. 
Environ. 2015, 83, 11–
26.https://doi.org/10.1016/j.buildenv.2014.04.022. 

Tominaga, Y.; Sato, Y.; Sadohara, S. CFD simulations 
of the effect of evaporative cooling from water 
bodies in a micro-scale urban environment: 
Validation and application studies. Sustain. Cities 
Soc. 2015, 19, 259–
270.https://doi.org/10.1016/j.scs.2015.03.011. 

Zeng, F.; Lei, C.; Liu J., Niu,J; Gao ,N. CFD simulation 
of the drag effect of urban trees: Source term 
modification method revisited at the tree scale. 
Sustain. Cities Soc. 2020, 56, 102079. 
https://doi.org/10.1016/j. scs. 2020.102079. 

Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, 
B. CFD simulation of urban microclimate: 
Validation using high-resolution field 
measurements. Sci. Total Environ. 2019, 695, 

133743. 

Li, K.; Yu, Z. Comparative and Combinative Study of 
Urban Heat island in Wuhan City with Remote 
Sensing and CFD Simulation. Sensors 2008, 8, 

6692–6703. https://doi.org/10.3390/s8106692 

   126 



 

   127 



Ensemble Learning methods for Soil Moisture Retrieval from Radar 
Images 

 

 

Liguo Wanga,b, Ya Gaoa, Geji Zhongc, Yitong Wanga 

a.Harbin Engineering University, Harbin, Heilongjiang, China, 150000,  
b.College of Information and Communications Engineering, Dalian Minzu University, 

Dalian, 116600, China 

c. School of Ethnology and Sociology, Minzu University of China, 27 Zhongguancun South 
Street, Haidian District, Beijing, China 

wangliguo@hrbeu.edu.cn,gaoya0001@hrbeu.edu.cn,18101356515@163.com, 

yitongveton@163.com 
* Corresponding author: Ya Gao, gaoya0001@hrbeu.edu.cn 
 

 

ABSTRACT: Soil moisture is one of the extremely important parameters on the land surface. Efficient and 
accurate monitoring of the spatial and temporal distribution of soil water content is of great practical 
significance and scientific value for crop yield estimation, drought monitoring, water resource allocation and 
ecological protection. Synthetic Aperture Radar (SAR) has the ability to observe the ground surface all day long 
and in all weather, independent of clouds and rain, and has a high interest in the study of soil moisture inversion. 
The Sentinel-1 SAR data has high resolution and accuracy and is freely available to the public, which greatly 
reduces the development cost, so the inversion study of soil moisture based on Sentry data has great practical 

significance. In this study, we developed a soil moisture retrieval method using ensemble learning by Sentinel-1 
and Sentinel-2 with multi-source datasets. We used Sentinel-1 IW GRD product, synchronous observation data 
set of soil moisture from TPDC, and ASTER GDEM. The spatial resolution of all remote sensing data is 30m. 
Techniques like Boosting are iterable, sequential and adaptive because each predictor is corrected for the errors 
of the previous model. And Categorical boosting (CatBoost) performed slightly better than the Gradient 
Boosting Decision Tree (GBDT). Better results were obtained using CatBoost for soil moisture prediction, while 
the best inversion results were obtained when both VV and VH polarizations of the radar signal were used as 
input data. The MAE is 2.386 vol%, and the RMSE is 4.108 vol%. Ensemble learning, in order to obtain better 

prediction performance, combines the prediction results of multiple models (weak learners). CatBoost's base 
model uses a symmetric tree to prevent model overfitting. CatBoost also uses combined category features that 
can exploit the connections between features, which greatly enriches the feature dimension. 
 

Key-words: soil moisture, CatBoost, GBDT, Sentinel-1, remote sensing 
 
1 INTRODUCTION 

Soil moisture is an important parameter in research in 
the field of atmospheric science as well as agricultural 
science. The traditional method of measuring soil 
moisture is suitable for collecting soil moisture 

information from small area sample points, which 
requires a lot of manpower for sampling and 
laboratory measurements, and is difficult to realize the 
measurement of soil moisture in large areas(Jiang et 
al. 2021). The advent of remote sensing technology 
has solved the shortcomings of traditional methods 
and allows for large-scale, high-resolution soil 
moisture monitoring. Microwave remote sensing has 

now been applied to high-precision soil moisture 
monitoring(Zhang et al. 2022; Abowarda et al. 2021; 
Karthikeyan and Mishra 2021; Wei et al. 2019).  

With the development of microwave remote sensing in 
recent years, soil moisture inversion methods based on 
non-parametric methods on the basis of theoretical 
models have developed rapidly. El Hajj, M. et al. used 
a neural network algorithm to estimate SM. they 

estimated the applicability of C- and L-band radar 
signals for soil moisture inversion(El Hajj et al. 2019). 
LIU et al. used generalized regression neural network, 
support vector regression, random forest, regression 
(RFR) and deep neural network (DNN) algorithms 
combined with Sentinel-1A and Sentinel-2A images to 
estimate SM(Liu et al. 2021). In their study, Nguyen, 
T. T. et al. used a new approach using advanced 

machine learning (ML) models and multi-sensor data 
fusion to make accurate predictions of soil 
moisture(Nguyen et al. 2022).  
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In this study, we used sentinel-1 and sentinel-2 and 
other related data to build a dataset for local soil 
moisture inversion of vegetation cover areas using an 
ensemble learning approach. 

2 MATERIALS AND METHODS 

2.1 Study area 

The ground synchronized sampling samples were 
distributed in the upstream areas of the Luan River 
(Shandian River Basin and Little Luan River Basin). 

The dataset contains surface and soil moisture data 
measured simultaneously on the ground during the 
2018 Soil Moisture Remote Sensing Experiment 
(SMELR) aerial flight test in the Luan River Basin, 
which was used to verify the "true value" of the 
remote sensing inversion(Zhao et al. 2020). 

 

Figure 1. The geographical location of the studyarea, 
topographic map and sampling points 

2.2 Methodology 

2.2.1 The water cloud model 

Water Cloud Model (WCM) is a kind of semi-
empirical model. In 1978, Ulaby et al. proposed it 
based on the study of regional scattering of crops. The 
only relevant parameters in the model are vegetation 

parameters and soil moisture(Attema and Ulaby 1978). 

0 0 2 0

can veg soil   = +
 

(1) 

( )0 2cos 1veg AV  = −
 

(2) 

( )2

2= exp 2 / cosBV −
 

(3) 

where  is the total backscattering coefficient 

received by the radar.  is the signal directly 

reflected by the vegetation.  is the scattered 

signal of the soil.  is the attenuation coefficient of 

the signal attenuated twice by the vegetation.  is the 

signal incident angle. 𝑉 is vegetation related 
parameters, NDWI, NDVI and EVI are described as 
vegetation in this study. A and B are empirical 
coefficients for the model, related to the type of 
vegetation and radar parameters.  

2.2.2. Categorical Boosting (Catboost) 

Catboost is a decision tree model based on gradient 
boosting. The main problem addressed is to handle 
categorical features efficiently and rationally, which 
can be seen from its name. CatBoost is composed of 
Categorical and Boosting. In addition, CatBoost solves 
the problem of gradient bias and prediction bias, thus 

reducing the occurrence of overfitting and thus 
improving the accuracy and generalization of the 
algorithm. The pseudo-code of CatBoost is expressed 
as follows(Dorogush A V et al. 2018): 

Algorithm: Updating the models and calculating 
model values for gradient estimation 

input : ( ) 
1

,
n

k k k
X Y

=
 ordered according to σ, the 

number of trees I; 
Mi ← 0 for i = 1.. n; 
for iter ← 1 to I do 
   for i ← 1 to n do  
      for j ← 1 to i – 1 do   

           gj ← ( )
( )

,
i j

j
a M X

d
Loss y a

da =
; 

      M ←LearnOneTree((Xj,gj) for j = 1..i-1); 
      Mi ←Mi + M; 
return M1 … Mn; M1(X1), M2(X2) Mn(Xn) 

2.2.3 Gradient Boosting Decision Tree (GBDT) 

A Gradient Boosting Decision Tree (GBDT) is a 
gradient boosting decision tree, where the output of a 
GBDT model is the sum of several decision trees, each 
of which is a fit to the residuals of the previous 

combination of decision trees, a "correction" to the 
previous model. ". Gradient boosting trees can be used 
for both regression problems (in this case known as 
CART regression trees) and classification problems (in 
this case known as classification trees)(Guolin Ke et 
al. 2017; Zhang et al. 2017). The pseudo-code of 
GBDT is expressed as follows: 
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Algorithm: Gradient Tree Boosting Algorithm.  
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3 RESULT  

Based on ensemble learning algorithm, the SM is 
estimated with sentinel-1 and other multi-source 
datasets.  

Since SENTINEL-1 is divided into VV and VH 
polarization methods, we have chosen three data sets 
as input in this paper. In the input set, the radar signal 
is divided into three ways VV, VH and VV_VH. Two 
algorithms, GBDT and CatBoost, are also used to 

compare which combination can get better soil 
moisture results. The estimated SM results with two 
methods were shown in Figure 2 and 3. 

Figure 2 represents Observed soil moisture and 
predicted soil moisture dispersion point diagram of 
GBDT.  Figure 2(a1) is displayed VV polarization as 
input, and the MAE is 3.508, Bais is 0.00, RMSE is 
5.323.  The MAE, Bais, RMSE are 3.157, 0.00, 4.345 

respectively with VH as the input (see Figure 2(a2)).  
When VV_VH is used as input, the MAE is 3.374, 
Bais is 0.00, and RMSE is 4.768. From these three 
input methods, the best results are obtained when the 
radar signal input is VH polarized, which is better than 
the VV and VV_VH polarization methods. 

 

 

 

Figure. 2 Observed soil moisture and predicted soil 
moisture dispersion point diagram of GBDT ((a1)VV, 

(a2)VH, (a3)VV_VH) 

The results of the CatBoost-based soil moisture 
inversion method are shown by Figure 3. Similarly, we 
divided the radar input into three parts. The inputs 
with VV and VH results are, MAE of 2.433 and 2.474, 
both Bais of 0.00, RMSE of 4.126 and 4.123, 
respectively (Figure(b1) and (b2)). Moreover, we can 
found that the result of VV_VH input is greater than 
VV and VH, with MAE of 2.386, Bais of -0.00, RMSE 

of 4.108, severally (Figure(b3)).  
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Figure. 3 Observed soil moisture and predicted soil 
moisture dispersion point diagram of CatBoost 

((b1)VV, (b2)VH, (b3)VV_VH) 

CatBoost employs an effective strategy to reduce 

overfitting while ensuring that the entire dataset is 
available for learning. That is, the dataset is randomly 
ranked and the average label values of samples with 
the same category values are calculated by simply 
including the label values of the samples before this 
sample. CatBoost combines all the combined, 
category-based features of the current tree with all the 
category-based features in the dataset. We also 
calculated the MSE comparison curves of different 

parameters of CatBoost (Figure 4_c1, c2 c3). We can 
clearly see that the MSE comparison curves of 
different parameters of CatBoost values obtained for 
the three inputs are in the range of 0-0.3.  

 

 

 

Figure. 4 MSE comparison curves of different 
parameters of CatBoost (VV, VH, VV_VH) 

4 DISCUSSION 

We successfully obtained the predicted soil moisture 
by both methods GBDT and CatBoost. We can find 

that both methods can get better results, but the 
CatBoost algorithm is better than GBDT. The optimal 
inversion results are obtained when the input set of the 
algorithm, the radar signal, is VV_VH polarized. MAE 
is 2.386, Bais is -0.00, and RMSE is 4.108, 
respectively.  
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CatBoost reduces the need for extensive 
hyperparameter tuning and reduces the chance of 
overfitting, which also leads to a more general model. 
Although, CatBoost has several parameters to tune, it 
contains parameters such as number of trees, learning 
rate, regularization, tree depth, fold size, bagging 
temperature, etc. 

5 CONCLUSION  

Three SAR inversion configurations were developed 
(single VV, single VH, and VV and VH) as the input 
of ensemble learning algorithm. The results show that 
inversion results using both VV and VH as inputs due 
to VV alone and VH alone.  

CatBoost employs an effective strategy to reduce 
overfitting while ensuring that the entire dataset is 

available for learning. That is, when the data set is 
randomly arranged and the average label value of 
samples with the same category value is calculated, 
the label value of previous samples of this sample is 
only included in the calculation. It reduces the need for 
many hyperparameter tuning and reduces the chance 
of overfitting, which also makes the model more 
versatile. CatBoost is more effective for soil moisture 

retrieval. 
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ABSTRACT - Based on FAO's water stress definition, this study constructed a method to disaggregate water 
stress's spatial and temporal distribution in China by combining multi-source data, including statistical, remote 
sensing and model-simulated data. The remote sensing data and the model-simulated data provided the spatial 
and temporal proxies for the renewable water resource and freshwater withdrawal to disaggregate the statistical 
values at the provincial administrative units. The disaggregated data at the grid scale were used to calculate 
water stress in China's major river basins and to evaluate their spatial and temporal changes and drivers. 

Among China’s ten first-class water resources regions, Haihe River holds the highest water stress, followed by 
Huaihe River and Northwest Rivers, with water stress larger than 100% (the extreme water stress level). The 
water stress in each water resource region is spatially heterogeneous, but the extreme and high water stress level 
means that the available water resources cannot meet the demands of water use and it is in an unsustainable 
status. From 2002 to 2020, the water stress in Haihe River, Pearl River, and Southeast Rivers were significantly 
declining because of increasing precipitation and decreasing water use. However, attention should be paid to the 
significant increasing trend of water stress in Huaihe River and Northwest Rivers due to declining available 
water resources and increasing water use. 
 

1 INTRODUCTION 

Water, the source of life, is vital to human health and 
well-being. Water scarcity can hamper the sustainable 
development of the economy, society, and human 
beings. Ensuring availability and sustainable 
management of water and sanitation for all is the key 
content of the Sustainable Development Goal 6 (SDG 
6) in the United Nations 2030 Agenda. Water stress 

level of the SDG 6.4.2 indicator provides a measure of 
water scarcity by considering the environment flow 
requirement (EFR) (FAO, 2018, 2019). High levels of 
water stress can lead to competition increases and 
potential conflicts among water use sectors, which is 
adverse to sustainable development. 

The Food and Agriculture Organization of the 
United Nations (FAO), as the custodian agency of 

SDG 6, proposed a global framework for evaluation of 
water stress levels at the national scale by using the 
statistical data from FAO Global Information System 
on Water and Agriculture (AQUASTAT) (FAO, 2018). 
The water stress in China in 2018 was resported as 
43% in the report on level of water stress issued by 
FAO and UN-WATER in 2021 (UN-WATER, 2021). 
China was cataloged as a country with a low water 

stress level. However, China is a large country with 
1.4 billion population and unevenly distributed water 
resources in time and space. As the population grows, 
rapid economy development and global climate 
change, the shortage of water resources will be a more 
serious problem, especially in northern China. The 

supply of water resources cannot meet the demand for 
water use in many regions of China. Therefore, it is 
necessary to take an in-depth analysis of water stress 
at the sub-national scale, which is helpful to formulate 
water management policies and ensure the sustainable 
utilization of water resources. The water stress 
monitoring at the national scale cannot reflect regional 
and sub-regional differences within countries. 

Meanwhile, the information of temporally dynamic 
change of water stress is also lacking due to the 
limitations of data and methods (UN-WATER, 2021). 

Understanding spatial and temporal changes of 
water stress plays a critical role in the sustainable 
utilization of water resource. For the regional 
assessment of water stress in China, Zhang et al. 
(2020) analyzed China’s water stress and its drivers at 

the provincial administrative unit by calculating the 
water stress indicator. Pan et al. (2018) used the 
Falkenmark index and water stress indicator to 
quantitatively evaluate water resource pressure in 
China's first-grade districts of water resources. The 
water stress indicator calculated in Zhang’s and Pan’s 
studies didn’t consider EFR, differing from the one 
defined by the SDG 6.4.2 indicator. Environment flow 

reservation is essential for the sustainability of water 
resources. Ma et al. (2020) reported a comprehensive 
nationwide water scarcity assessment in China at 
multiple temporal and geographic scales by 
considering the water quality and defining 80% of the 
total freshwater resources as EFR. However, EFR 
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changes with regions rather than a fixed ratio, and the 
water stress level is related to how much water is 
reserved for the environment (Vanham et al., 2021). 
Vanham et al. (2018) discussed that some essential 
elements including temporal and spatial 
disaggregation should be considered in SDG 6.4.2 
indicator. The development of remote sensing 

technology can provide a large number of data on the 
Earth's surface information. The advantages of high 
spatial and temporal resolution and quasi-real-time 
monitoring by remote sensing data have not been 
effectively placed in the assessment of water stress of 
SDG 6.4.2 indicator. Therefore, the purpose of this 
work is to disaggregate water stress level  indicatior by 
combing multi-source data including remote sensing 

data and to evaluate the spatial and temporal changes 
of water stress and the drivers in China.   

2 METHOD 

2.1 Water stress indicator  

The level of water stress of SDG 6.4.2 indicator is 
defined as the ratio between total freshwater 
withdrawn (TFWW) by all major sectors and total 
renewable freshwater resources (TRWR) after 
deducting EFR (UN-WATER, 2021), and calculated 
as: 

Water stress (%) = TFWW/(TRWR - EFR)×100   (1) 

TFWW is usually calculated as the sum of withdrawal 
from renewable freshwater resources and fossil 
groundwater for agriculture, industries, and services 
minus the direct use of non-conventional water as 
wastewater, the direct use of agricultural drainage 
water and the use of desalinated water. TRWR is the 
sum of internal renewable freshwater resources 
generated from endogenous precipitation and external 

renewable freshwater resources (flows entering the 
country, taking into consideration of the quantity of 
flows reserved to upstream and downstream countries 
through agreements or treaties). EFR refers to the 
quantity and change of freshwater flows required to 
sustain freshwater ecosystems and the human 
livelihoods and well-being. Water-stress values are 
categorized into five levels:  

0-25%, no water stress;  
25%-50%, low water stress level;  
50%-75%, medium water stress level;  
75%-100%, high water stress level;  
>100%, extreme water stress level.  

High water stress level negatively affects social and 
economic development. Water stress level >100% 
indicates that environmental water or non-renewable 
water (such as groundwater) is being used, which is 

undesirable and unsustainable. 

2.2 Spatial and temporal disaggregation of TRWR and 
TFWW 

TRWR and TFWW are usually obtained from 
statistical data at national or provincial level. Many 
assessments of water stress in China mainly depended 
on this data. The spatial and temporal disaggregation 
of TRWR and TFWW requires the gridded remote 

sensing data and simulated data as the proxy. In this 
work, remote sensing-based precipitation -  
evapotranspiration - the change of terrestrial water 
storage provides the spatial and temporal proxy for 
TRWR, while model-simulated water use based on the 
remote sensing data provide the proxy for TFWW. The 
principle of spatial disaggregation is that TRWR 
(TFWW) in a given region is the sum of values of all 

grids in the region. The temporal disaggregation 
implies that the yearly TRWR (TFWW) is the sum of 
all monthly values. The schematic diagram of the 
spatial and temporal disaggregation of TRWR and 
TFWW is shown in Figure 1. The weight on the grid 
scale or the monthly scale is calculated by the proxy of 
TRWR (TFWW) and then is multiplied by the 
statistical regional yearly TRWR (TFWW) to obtain 

the gridded or monthly values. Spatial disaggregation 
and temporal disaggregation are two independent 
processes. If the temporal disaggregation follows the 
spatial disaggregation, the gridded water resources and 
freshwater withdrawal at the monthly scale can be 
obtained. The water stress in different river basin 
scales can be calculated based on the gridded data.  

 
Figure 1. The (a) spatial and (b) temporal 
disaggregation process of  total renewable freshwater 
resources or total freshwater withdrawal (y is the data 
reflecting the temporal and spatial changes of total 
renewable freshwater resources or total freshwater 
withdrawal, which can be from remote sensing data or 

model-simulated data; ω is the weight; W is the target 
variable of total renewable freshwater resources or 
total freshwater withdrawal from the statistical data; i 
is the pixel contained in the corresponding region; j is 
the period from January to December) 

3 DATA AND MATERIALS 

According to Equation (1), the estimation of water 
stress mainly involves three variables: TFWW, 
TRWR, and EFR. The Annual China Water Resources 
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Bulletin provides the TFWW and TRWR data of each 
province in China. The GPM (Global Precipitation 
Measurement mission) precipitation, ETMonitor 
evapotranspiration, and GRACE (Gravity Recovery 
and Climate Experiment) terrestrial water storage 
anomaly (TWSA) as the remote sensing data sources 
together provide the proxy of the spatial distribution of 

TRWR. The GPM Precipitation data integrated the 
multi-source satellite remote sensing data and the 
meteorological site observations, with the temporal 
and spatial resolution of 0.1°/month, downloaded from 
https://disc.gsfc.nasa.gov. ETMonitor is a remote 
sensing-based ET model driven by multi-source data 
and can generate the global daily ET (Zheng et al., 
2022). Daily ET data in 1km resolution can be 

obtained from https://data.casearth.cn. GRACE TWSA 
data is from JPL Mascon products 
(http://grace.jpl.nasa.gov), with a spatial and temporal 
resolution of 0.5°/month. WaterGAP (Water-global 
Assessment and Prognosis), a Global hydrological 
model that quantifies human use of groundwater and 
surface water, provided the spatial proxy for TRWR 
(Hannes et al., 2021). The the monthly simulated data 

with 0.5°×0.5° spatial resolution released by the latest 
version of WaterGAP 2.2d (Hannes et al., 2020) are 
used in this work. 

Although International Water Management 
Institute gave the global scheme to estimate the EFR, 
it is very different from the actual situation of water 
resources in China. The difference between TRWR 
and EFR (TRWR ─ EFR) expresses the available 

water resources. Wang et al. (2006) obtained the ratio 
of available water resources of the ten first-class river 
basins in China by the in-situ observation from about 
144 stations over 115 rivers. The value of (TRWR – 

EFR) was calculated by TRWR multiplying the ratio 
of available water resources in this work.  

4 RESULTS AND DISCUSSION 

4.1 Water stress and change of whole China  

The average water stress in China from 2002 to 2020 
was 67%, ranging from a maximum of 73% to a 
minimum of 58% (Figure 2), in a medium water stress 

level, which is different from the results reported by 
the UN-WATER. This discrepancy is mainly from the 
calculation of EFR, while the ratio of available water 
resources used in this work can reflect the available 
water resources in China better. The water stress in 
China initially increased and then decreased from 
2002 to 2020, the maximum in 2008, and the 
minimum in 2020. Both TFWR ─ EFR and TFWW 
showed a significant increasing trend, indicating the 

rising wetness of climate and the growing demand for 
water use due to population growth and social and 
economic development during the past 20 years. 

Before 2008, the increasing water use and declining 
available water resources together contributed to the 
increase of water stress in China. The decrease in 
water stress since 2008 is mainly attributed to the 
increase in available water resources. The decrease in 
water use after 2013 due to the implementation of the 
strictest water resources management policy also 

contributes to the decrease in water stress.  

 
Figure 2. The water stress (WS) in China from 2002 to 
2020 (TRWR ─ EFR is the available renewable water 
resources). The right y-axis is the ratio of TFWW or 
TRWR ─ EFR to their mean values in 2002-2020, 
respectively. 

 

Figure 3. The water use by different sectors and water 
supplies in China from 2002 to 2020 

Agriculture is China's dominant water use sector, 
accounting for 63% of total water withdrawal on 

average and showing a significant decline during the 
past 20 years (Figure 3). Therefore, the improvement 
of agricultural water use efficiency to reduce 
agricultural water use is critical to alleviate the water 
stress in China. Industrial water use accounts for 22% 
on average, showing an initially increasing and then 
decreasing trend, reaching the maximum around 2010. 
Domestic and ecological water use accounts for 13% 

and 2%, respectively, showing a significant increasing 
trend from 2002 to 2020. Surface water is the main 
water supply in China, accounting for more than 80% 
of the total water supply and showing a significant 
increasing trend. Groundwater supply decreased 
significantly, especially since 2014, which reflected 
the depression of groundwater exploitation and the 
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increasing water supply to North China Plain due to 
the implementation of the Middle Route of the South-
to-North Water Diversion Project (Long et al., 2020). 
The substantial increase in other unconventional water 
supplies demonstrates the improvement of wastewater 
reuse and seawater desalination capacity. 

4.2 Spatial distribution of water stress in basin scale  

There are ten first-class water resource regions in 
China. Six regions including Songhua River, Liaohe 
River, Haihe River, Yellow River, Huaihe River, and 
Northwest Rivers locate in Northern China, while the 
other four regions of Yangtze River, Pearl River, 
Southeast Rivers, and Southwest Rivers in Southern 
China. Among the ten water resource regions, the 
Haihe River holds the highest water stress, followed 

by Huaihe River and Northwest Rivers. The water 
stress in the three regions is more than 100% (at the 
extreme water stress level) (Figure 4), indicating that 
the available water resource cannot satisfy the 
demands of regional water use after 
deductingconsidering the environmental flow 
requirement and the water resource exploitability. 
Yellow River and Liaohe River have a high level of 

water stress. The water stress of the Pearl River, 
Yangtze River, and Songhua River regions are at the 
medium level. Southeast Rivers region is in the low 
water stress level. There is no water stress in the 
Southwest Rivers region because of the abundant 
renewable water resource and less water use demand. 
The main river basins in the north except the Songhua 
River are all in high or extreme levels of water stress, 

which is consistent with the current situation of water 
shortage in Northern China. The water stress in 
northern China is generally higher than that in the 
South, which relates to the spatial distribution of 
precipitation. Precipitation is the main source of water 
resources.  

 

Figure 4. The water stress of the ten first-class water 
resources regions in China (the bar colors mean 
different levels of water stress: red is more stressd, 
blue is less stressed) 

The water stress in each water resource region is 
spatially heterogeneous by the expression of water 
stress in China’s third-class river basins (Figure 5). 
Almost all sub-river basins in Haihe and Huaihe water 
resources regions lie in the extreme water stress level. 
Only several sub-river basins in the mountain area of 
Haihe River show medium and low water stress levels. 

The Northwest Rivers region as a whole has an 
extreme water stress level, but the regions with the 
extreme level are mainly located in the northwest of 
Xinjiang Uygur Autonomous Region, and the Heihe 
river basin, Shiyanghe river basin, and Shulehe river 
basin, because the large amounts water are used by the 
agriculture. Agricultural water use accounts for larger 
than 90% of the total freshwater withdrawal in the 

Northwest region. These river basins are also the hot 
areas of water resources research in the arid and semi-
arid regions because of the water shortage problem 
(Wang and Wei, 2019). Yellow River region is also 
confronting a serious water scarcity problem, 
especially in its middle and downstream with the 
extremely high level of water stress. The majority of 
sub-river basins in Liaohe River except for the part in 

the east are also in extreme water stress levels. The 
east of Pearl River because of the developed economy 
holds a higher water stress level than the west. The 
downstream of Yangtze River also lies in an extreme 
water stress level because of increasing water use 
demands with economic prosperity, higher than that in 
its upper and middle reaches. Although Songhua River 
keeps a medium water stress level, some sub-river 

basins in the central region have an extreme level of 
water stress. The water stress in the south and the 
north of Southeast Rivers is higher than that in the 
central region. In general, the water stress level in the 
east of China is higher than that in the West, relating to 
the developed economy and the dense population with 
more water use demands. The spatial distribution of 
water stress in Figure 5 is generally consistent with the 
results of Ma et al. (2020) and Wang et al. (2017). 

 

Figure 5. The spatial distribution of water stress level 
in the third-class river basins in China 
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4.3 Water stress changes and drivers in the main river 
basins from 2002 to 2020 

The Mann-Kendall (MK) test method is used to take 
the trend analysis. A negative (positive) MK value 
means a declining (increasing) trend. The absolute MK 
valuegreater than 1.96 means a significant change. 
Otherwise, it is nonsignificant. From 2002 to 2020, the 

water stress in Haihe River, Pearl River, and 
Southeastern Rivers regions significantly declined, 
while Liaohe River, Songhua River, and Yellow River 
regions showed a nonsignificant decreasing trend 
(Figure 6). The declining change in water stress is 
beneficial to water resources sustainability, especially 
to those regions with extreme or high water stress 
levels, such as Haihe River, Liaohe River, and Yellow 

River. Yangtze River and Southwest Rivers gave a 
slightly nonsignificant increasing trend. MK values in 
Huaihe River and Northwest Rivers are greater than 2, 
indicating that the two regions have had a significant 
increasing trend during the past 20 years. The 
significant increasing trend will further exacerbate the 
problem of water scarcity due to the extreme water 
stress level in these regions, which will not be helpful 

to sustainable development.  

 

Figure 6. The change trends of water stress in the ten 
first-class water resources regions in China (Mann-
Kendal (MK) value >0 indicates an increasing trend of 
water stress, and vice versa. |MK|>1.96 means the 
significant change in the 95% confidence interval.) 

Consistent with the trend of the whole region, 
most sub-river basins in Haihe River, Pearl River, 
Southeast Rivers, Liaohe River, and Songhua River 
showed a declining trend, only several sub-river basins 
have an opposite trend (Figure 7). The upper stream of 
Yellow River shows a significant decrease, while some 
sub-river basins in the middle and downstream are 
increasing the water stress. A significant decrease is 

found in the upper stream of Yangtze River. Water 
stress in most regions in the west and the north of 
Yangtze River is increasing, but not significant. 
Almost all sub-river basins in Huaihe River have an 
increasing change in water stress, especially in the 

west of this region, a significant increase be found. 
The increasing change of water stress in Northwest 
Rivers is mainly contributed by its northern regions 
with significant increasing.  

 

Figure 7. The spatial distribution of water stress 
change in the third-class river basins in China 

Climate factors and water use changes together 
act on the change of water stress. A Logarithmic Mean 
Divisia Index (LMDI) method was used to calculate 

the contribution of climate factors and water use 
factors to the change of water stress from 2002 to 
2020, and the results are shown in Figure 8. The 
negative value means the restrains to the increase of 
water stress, while the positive value promotes the 
increase of water stress. During the past 20 years, the 
decline in water stress at Haihe River, Pearl River, 
Southeast Rivers, and Liaohe River can be attributed 

to the combined effects of the wetting climate 
(increasing precipitation) and decreasing water use. 
The contribution from the climate wetting to water 
stress in Songhua River and Yellow River is greater 
than the contribution from the increased water use, 
which leads to a decreasing trend in water stress in 
these two regions. The increase in water use generally 
contributes to the increase of water stress in Yangtze 
River, Southwest Rivers, and Northwest Rivers, 

although the wetting climate can suppress some 
increase in water stress. The drying climate with less 
precipitation is the main reason for the increase in 
water stress in Huaihe River, and the increase in water 
use further intensifies the water stress increasing. 
Generally, the contribution of climate factors to the 
change of water stress is greater than that of the water 
use factor, and the regions affected by the wetting 

climate are more than that by the drying climate. The 
increase in water use is the dominant of the increase of 
water stress in the arid and semi-arid regions in 
Northwestern China.  
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Figure 8. The contribution of climate factor and water 
use factor to the change of water stress in the ten first-

class water resources regions 

5 CONCLUSION 

This study provids a method to obtain the temporal 
and spatial distribution of water stress at the gridded 
scale. Based on the gridded water stress data, water 

stress in China’s river basin scale are calculated and 
evaluated. Water stress in the North of China is 
generally higher than in the South, and higher in the 
East than in the West. The spatial distribution of water 
stress is consistent with the natural endowment of 
China's water resources and the economic 
development level. The water stress of the whole 
China shows an initially increasing and then 

decreasing trend from 2002 to 2020, which is related 
to climate change and the implementation of water 
resources management policy. The assessment of 
water stress at China’s river basins is generally 
reasonable, but it is still a challenge to estimate water 
stress accurately because of uncertainties in estimating 
water use, external renewable water resources, 
environmental flow requirements, etc.  
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ABSTRACT - Vegetation water content inversion is an important part of many key biogeochemical cycles. 
Conventional vegetation moisture monitoring is usually carried out in the visible/near-infrared spectral region 
band, which is mainly proposed based on the reflection characteristics of leaves. In order to avoid the frequent 
influence of extreme weather events such as haze, clouds, and rain, passive microwave data are used to retrieve 
vegetation moisture in this paper. In the first step, the Advanced Integral Equation Model (AIEM) is used to 
simulate the emissivities of L, C and X bands. It is found that the surface emissivity of bare soil at different 

frequencies can be characterized by linear functions whose parameters depend on the frequency pairs used. 
Secondly, based on the radiative transfer model (ω-τ model) and passive microwave vegetation index (MVIs), the 
water content of vegetation under different vegetation cover conditions is calculated under large-scale 
observations. In the third step, in order to verify the inversion accuracy of vegetation water content, the 
normalized vegetation index (NDVI) data obtained from MODIS products are used as indirect comparison 
because it is difficult to obtain a large range of vegetation water content data. The results shows that the 
vegetation water retrieved by AMSR-E/AMSR2 has good consistency and correlation with NDVI at the spatial 
and temporal scales. 

Keywords: Vegetation water content，Passive microwave，Microwave vegetation indices, AMSR-E/AMSR2, 

NDVI. 
 

1 INTRODUCTION  
 

Vegetation water content (VWC) is a major factor 
affecting photosynthesis and biomass of green plants, 
and an indispensable component in many key 
biogeochemical cycles. VWC is also an important 
parameter in soil moisture retrieval from active and 
passive microwave data, because it is directly related 
to microwave attenuation characteristics of the 

vegetation. 
Remote sensing, as a comprehensive, macroscopic, 

rapid and real-time observation method, is one of the 
effective methods to monitor the surface parameters. 
Microwave remote sensing, as a tool that can penetrate 
clouds and is less affected by cloud and rain weather 
and light conditions, is an ideal method to retrieve the 
vegetation water content of long time series in 

southwest China where cloud and rain weather are 
more frequent. Microwave sensors are divided into 
active and passive. In passive microwave remote 
sensing, vegetation optical thickness is a key 
parameter for vegetation observation. In early studies, 
the linear relationship between vegetation water 
content and vegetation optical thickness proposed by 
Jackson et al. (Jackson and Schmugge 1991)(Equation 

(1)) has been widely accepted. 

 b w =   (1) 

Where: τ represents the optical thickness of 
vegetation. w is the water content of vegetation, and 
the coefficient b is an empirical constant, which is 
determined by the observation frequency and 
vegetation type. Therefore, in passive microwave 
remote sensing, only the parameters of vegetation 
optical thickness and parameters are needed to retrieve 

vegetation water content. 
Most of the previous studies on passive microwave 

inversion of vegetation optical thickness focused on 
AMSR-E sensor data. AMSR-E (Njoku 1999) 
officially generated the vegetation optical thickness 
product based on the brightness temperature data of 
AMSR-E sensor through iterative algorithm. However, 
the vegetation optical thickness product is a subsidiary 

product of soil moisture inversion, which sacrifices the 
accuracy of vegetation optical thickness product while 
improving the accuracy of soil moisture product. 
Therefore, the application of the optical thickness 
product in large-scale vegetation monitoring is greatly 
limited. In recent years, Zhao Tianjie et al. (Zhao et al. 
2011) used the multi-frequency Microwave Vegetation 
Indices (MVIs) proposed by Shi Jiancheng et al.(Shi et 
al. 2008). The optical thickness of vegetation was 
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retrieved based on AMSR-E multi-frequency 
brightness temperature data. Since MVIs is not 
affected by soil signals, the proposed vegetation 
optical thickness inversion algorithm makes up for the 
shortcomings of previous works to a large extent. 

In this paper, we propose a method of estimating 
VWC using MVIs, which depends on vegetation 

structure parameters and considers vegetation 
coverage. Vegetation water content in Asia is retrieved 
and its relationship with normalized difference 
vegetation index (NDVI) is discussed. 

2  RADIATIVE TRANSFER THEORY 

2.1 General model  

It is necessary to consider the influence of 

atmospheric emission (
BP SKY UT − −

) and atmospheric 

attenuation (
ATM ), When simulating the brightness 

temperature at the top of the atmosphere,  

 1exp( cos )BP bP ATM BP SKY UT T T −

− −=  −  +  (2) 

Where：
BPT  is the brightness temperature at the top 

of the atmosphere; 
bPT  is the brightness temperature 

at the surface of the vegetation that observed 

immediately above the canopy; 
ATM is the 

atmospheric attenuation factor; 
BP SKY UT − −

is the 

upward atmospheric radiation. The simple calculation 

method of 
ATM  and 

BP SKY UT − −
can be found in 

Pellarin et (Pellarin et al. 2006)(Pellarin et al. 2006), 
as follows: 

(1.4 ) 2exp[ 3.8687 0.2294 ( ) 0.00386 ( )]ATM GHz mZ km T K = − − −

  (3) 

(6.6 ) 2

1 1

2

exp[ 4.0166 0.2227 ( ) 0.00286 ( )

0.02330 ( ) 0.3020 ( )]

ATM GHz m

m rate

Z km T K

Q g kg R mm h



− −

= − − −

+  + 

                                                                             (4) 

(10.7 ) 2

1 1

2

exp[ 4.1207 0.2271 ( ) 0.00187 ( )

0.04610 ( ) 0.5712 ( )]

ATM GHz m

m rate

Z km T K

Q g kg R mm h



− −

= − − −

+  + 

 (5) 

( )( ) exp( / cos )BP SKY U ATMeq ATM fT f T  − − =  −      (6) 

Where: 2exp[4.8716 0.002447 ( )]ATMeq mT T K= + , 

( )Z km is the height from pixel to sensor. 2 ( )mT K is 

the temperature at 2 meters on the surface, 
1

2 ( )mQ g kg − is the surface air humidity ratio, and 

1( )rateR mm h− is the rainfall rate. The modeling of 

vegetation is discussed below. 

2.2 Vegetation model  

The zero-order radiative transport model, also 
known as ω-τ model, is the zero-order solution of the 
radiative transport equation of vegetation. It is widely 
used to simulate the brightness and temperature of the 
surface under vegetation cover, so as to invert the 
surface parameters. When vegetation coverage and 
atmospheric effects are not considered, two vegetation 
parameters, namely vegetation optical thickness τ and 

vegetation canopy single albedo ω, participate in the 
simulation of surface brightness temperature in the ω-τ 
model. The ω-τ model has the form: 

( ) ( ) ( ) (1 ) ( ) ( )

(1 ( )) ( , ) ( )

s s v

b p v p p s v p s v p v

s v

v p p v p

T f F f L f T F f T F f T

F f f T L f

  

  

=    + −   +  

+  −   

  

(7) 

Where: b pT represents the surface brightness 

temperature received by the radiometer under P 

polarization (V/H), 
vF represents the vegetation 

coverage, s

p represents the soil emissivity, 

(1 ) (1 )v

p pL = −  − represents the emissivity of the 

vegetation layer,  represents the single scattering 

albedo of the vegetation canopy, 

exp( / cos( ))pL  = − represents the vegetation 

transmittance,  and  represents the vegetation 

optical thickness and observation Angle, respectively. 

f represents the channel frequency.
sT and 

vT represent 

soil temperature and vegetation canopy temperature, 
respectively. 

2.3 Emissivity characteristics of bare soil at two 
adjacent frequency angles 

Shi et al. (Shi et al. 2008) proposed the microwave 
vegetation index MVIs based on the setting of AMSR-
E sensor (multi-frequency, dual-polarization, 55° 
observation Angle), which effectively removed the 
influence of soil information.  

 ( ) ( )2 2 1 1( ) ( ) ( ) ( )Bv Bh Bv BhMVIs T f T f T f T f= − −  (8) 

In order to eliminate the influence of soil 
emissivity on vegetation information, the relationship 
between soil emissivity is found. Based on the 
Advanced Integrated Emission Model (AIEM), the V-
polarized Emission and H-polarized surface emissivity 

of L-band (1.41GHz), C-band (6.925GHz) and X-band 
(10.65GHz) in microwave band were simulated in this 
paper. Table 1 shows the parameter range of simulated 
emissivity of bare surface. 
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Table 1 
Parameters and their range used in AIEM simulations 

parameter min  max Interval unit 

Incidence angle (θ) 30 65 5 ° 

Soil moisture (Ws) 2 44 2 % 

Rms height (σ) 0.1 4.5 0.2 ㎝ 

Correlation length (l) 2 40 2 ㎝ 

Total data：8×22×23×20=80960 

 

Fig.1. Relationships of AIEM simulated surface emissivity at 55° for the different frequencies. 

 

As shown in Figure 1, the surface emissivity is 
simulated in the form of C-band (6.925ghz) as the X-
axis, L-band (1.41ghz) and X-band (10.65ghz) as the 
Y-axis, respectively. It is not difficult to see that the 

surface emissivity between adjacent frequencies or 
incident angles has a linear relationship: 

 2 1 2 1 2 1( ) ( , ) ( , ) ( )s s

p pf a f f b f f f = +   (9) 

Where: parameter is independent of polarization, but 
only related to the relationship between band 
frequency and adjacent incident Angle. The 

relationship between polarization difference ( s s

v h − ) 

of L-band, C-band and X-band simulated by AIEM 
model is as follows: 

(6.925GHz) (6.925GHz) 0.4733 ( (1.41GHz) (1.41GHz))s s s s

v h v h   − =  −

  (10) 

(10.65GHz) (10.65GHz) 0.8112 ( (6.925GHz) (6.925GHz))s s s s

v h v h   − =  −

  (11) 

The root mean square error (RMSE) of the relative 
error expressed in Formula (7) is 0.44%, and the root 
mean square error (RMSE) of the relative error 

expressed in Formula (8) is 0.10%. The error is small, 
does not affect the experimental results, can be 
ignored. 

2.4 Retrieval method of vegetation water content  

The following assumptions are made in this paper: 
1) It is assumed that vegetation signals are 

uniformly distributed and not affected by 

polarization differences, v v =  , v v =  ; 

2) Suppose that the soil temperature Ts is 
approximately equal to the vegetation canopy 

temperature Tv, v s =  =  ;  

3) Assume that the single albedo of vegetation 
canopy ω=0(Zhao et al. 2011).  
These assumptions have been widely used in 

passive microwave remote sensing to retrieve soil 
moisture and vegetation parameters (Njoku and Chan 
2006; Owe et al. 2001; Paloscia et al. 2006; Van de 
Griend and Wigneron 2004). 

By combining the previous two and three methods, 
the polarization difference ratio of radiometer 
brightness temperature at various observation 
frequencies can be stated as the following formula: 

   141 



 2 2 2 2

1 1 1 1

1 1

( ) ( ) ( ) ( )2 2

1 1
1 1 ( ) ( ) ( ) (

exp( cos ) exp( cos )( ) ( )

( ) ( ) exp( cos ) exp( cos )

bv ATM f BP SKY U f bh ATM f BP SKY U fBv Bh

Bv Bh bv ATM f BP SKY U f bh ATM f BP SKY U f

T T T TT f T f

T f T f T T T T

   

   

− −

− − − −

− −

− − − −

    −  + −  −  +−    =
−   −  + −  −  +  )

 
 

 (12)

Where:
( )( ) exp( / cos )BP SKY U ATMeq ATM fT f T  − − =  − , the 

formula can be simplified as: 

Take factor 2

1

1

( )

1

( )

exp( cos )

exp( cos )

ATM f

ATM f

 


 

−

−

− 
=

− 
 as 

atmospheric influence factor, which represents the 
influence of atmosphere on microwave radiation 
transmission, and can be expressed by the following 

formula: 

 2 2 2 2

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Bv Bh bv bh

Bv Bh bv bh

T f T f T f T f

T f T f T f T f


− −
=

− −
 (13) 

According to the above assumptions, when 
considering the surface vegetation coverage Fv, the 
vegetation model can be expressed as follows: 

2

1

2 ( )/cos

2 2 2 2

2 ( )/cos

1 1 1 1

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

f s s

bv bh v v v h

f s s

bv bh v v v h

T f T f e F F f f T

T f T f e F F f f T

 

 

 

 

−

−

−  + − −
=  

−  + − −

  (14) 

Where: let the parameter 2 2

1 1

( ) ( )

( ) ( )

s s

v h

s s

v h

f f

f f

 


 

−
=

−
, From 

equation (11), when 
2 10.65f GHz=  and 

1 6.925f GHz= , 0.8112 = . 
Jackson and Schmugge(Jackson and Schmugge 

1991) proposed the following formula for the 
parameters in equation (1). 

 / / 30b c c f= =  , ( 5cm  )  (15) 

Where:   represents the microwave wavelength. The 

b parameter in the formula above lowers as the 

wavelength increases. Only the type of plant is related 

to the b parameters. Equation (20) is applicable to 

both the C-band and the X-band in this work  
The following expression is derived by combining 

equations (1) and (15): 

 / 30b w c f w =  =    (16) 

The above equations (14) and (16) are combined, 

and it is known that   = 55°. The parameter vF  is 

calculated from the NDVI product of MODIS. Only 
VWC is an unknown variable. Use the iterative 
method to solve this function. Finally, the vegetation 
water content is obtained. 

Figure 2 shows that when parameter c is 

determined, vegetation water content changes with the 
change of FVC. Figure 3 shows that vegetation water 
content changes with the change of c when 
determining parameter FVC. 

As can be seen from Figure 3, this equation will 
encounter multiple solutions and no solutions when 

solving. In view of the above situation, the VWC 
observed in the previous ten days in this area is used 
as the initial value for iteration to ensure a unique 
solution. The initial value is used as the solution value, 
when there is no solution. 

 
Fig.2. Theoretical relationship between MVI and VWC 
under different FV 

 
Fig.3. Theoretical relationship between MVI and VWC 
under different C conditions 

3 RETRIEVALS OF VWC  

3.1 Region  

China has a wide range of latitude and longitude. 
China's territory spans nearly 50 degrees of latitude 

from north to south. Most of it is in the temperate 
zone, and a small part is in the tropics. There is no 
cold zone. It's about the size of Europe. Traversing 
high, medium and low latitudes from north to south, 
the complex environment results in a variety of 
vegetation.   
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Fig.4 April monthly mean values for VWC in the left, July monthly mean values for VWC in the right . 
 
3.2 AMSR-E/AMSR2 data 

The Advanced Microwave Scanning Radiometer 2 
(AMSR2) is a remote sensing sensor mounted on 
GCOM-W1, which is used to measure weak 
microwave radiation on the Earth's surface and 
atmosphere. AMSR2's antenna rotates every 1.5 
seconds to obtain data over 1,450 kilometers long. 
This cone scanning mechanism enables AMSR2 to 
acquire a set of daytime and night time data covering 

more than 99% of the Earth every 2 days. 
AMSR-E (2002-2011) and AMSR2 (2012-present) 

12.5km and 10.0km gridded standard brightness 
temperature data have been publicly released by 
institutions and universities such as JAXA, NSIDC 
and Bremen University.  

In this study, AMSR2 data products acquired in 
April and July 2022 were used as data sources. The 

selected bands are C band (6.9GHZ) and X band 
(10.65GHZ), and the polarization modes are vertical V 
polarization and horizontal H polarization. The 
resolution of the data product is 10KM. 

3.3 Retrieval of vegetation water content 

For the Chinese region, April represents the early 
spring (emergent vegetation) and July represents the 
summer (vegetation reaching its peak value in many 

places). The vegetation phenology of this period is 
quite obvious. So we take the remote sensing images 
in April and July of 2022 as raw materials for our 
experiments. 

We retrieve the vegetation water content for April 
and July 2022. (April on the left, July on the right). 
According to the findings, high VWC values are found 
in densely forested areas, primarily in the Qinling 

Mountains and southeast Tibet, while low VWC 
values are found in desert and sparse grassland 

regions. As demonstrated in Fig. 4, the distribution of 

VWC values increases from west to east and from 
north to south, which is consistent with China's 
shifting trend of vegetation distribution between April 
and July. 

4 RESULTS AND DISCUSSION 

Fig. 5 (April) and Fig. 6 (July) shows the scatter 
plots of NDVI and the VWC values for the global 
observations obtained during 2022. 

As can be seen, the B-value (y-axis) can have a 
wide dynamic range for any particular NDVI 
observation (a given value on the x-axis). This range 
takes into account the variations in optical and 
microwave sensitivity for various vegetation 
characteristics. These variations are mostly brought on 
by inherent variations in the information collected by 
microwave and optical sensors, as well as those 

devices' sensitivity to various vegetational 
characteristics. 

 
Fig.5 The scatter plots of NDVI and the VWC values 
in April 2022 
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Fig.6 The scatter plots of NDVI and the VWC values 
in July 2022 

5 CONCLUSIONS 

In this paper, we proposed a method of estimating 
VWC using MVIs, which depends on vegetation 
structure parameters and considers vegetation 
coverage. Vegetation water content in Asia was 

retrieved and its relationship with NDVI was 
discussed. 

The results showed that the VWC and normalised 
vegetation index (NDVI) from the AMSR2 inversions 
were in good agreement and correlated well at the 
spatial and temporal scales. The NDVI values were 
smaller or even negative in areas with less vegetation 
moisture in April at high latitudes, which is mainly 

caused by snow and vegetation dieback. During the 
vegetation growing season in July, NDVI values 
increased significantly, with a corresponding 
significant increase in vegetation moisture. The 
seasonal variation in vegetation moisture and NDVI is 
evident from April to July in the mid-latitudes. At 
lower latitudes, the range of variation was not 
significant and both showed high levels. 
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ABSTRACT- Efficiently and accurately identifying the spatial distribution of tea plantations is of great 
significance for ecological and environmental protection in Yunnan province, China. Since the study area is 
located in the subtropical plateau region of southwest China, the land is fragmented, the vegetation types are 
complex, and there are much cloudy and rainy weather, making it very difficult to identify tea plantations using 

only optical remote sensing data. In order to solve these problems, this paper uses Sentinel-1 (S1) Synthetic 
Aperture Radar (SAR) data and Sentinel-2 (S2) optical data to design 7 classification feature combinations to 
explore the influence of red edge features, radar features, and texture features on the identification accuracy of 
tea plantations. The feasibility of Jeffreys-Matusita distance (JM) feature selection and Recursive Feature 
Elimination (RFE) feature selection algorithm to find the optimal feature combination was verified, and the 
distribution of tea plantations in the study area was acquired by using the object-oriented random forest 
algorithm. The research shows that (1) the combination of SAR data and optical data can effectively improve the 
identification accuracy of tea plantations. (2) S2 red edge features and S1 radar features can significantly 
improve the accuracy of the identification results of tea plantations. (3) After applying the JM distance and RFE 

feature selection algorithms, the producer accuracy of tea plantations was improved by 1.39% and 2.38%, and 
the user accuracy was improved by 1.02% and 1.3%, respectively, compared with the identification of all 
features. The overall accuracy of the random forest algorithm combined with RFE is 93.43%. The producer 
accuracy of the tea plantations identification results is 91.07%, and the user accuracy is 89.47%. This study 
provides an effective approach to identify tea plantations in cloudy and rainy areas in the subtropical plateau of 
southern China. 
Keywords: Sentinel-1/2, Tea plantations, Feature selection, Plateau areas, random forest, Jeffries-Matusita 
distance, Recursive feature elimination. 

 
1 INTRODUCTION 

Tea is an economically significant crop in global 
agriculture, China is now the world’s largest tea 
producer (Yang et al. 2015). Tea is part of the Yunnan 

plateau characteristics of modern agriculture, the local 
implementation of rural revitalization, promote 
industrial prosperity with very important. In recent 
years, the rapid expansion of tea plantations has 
brought about a decline in the quality of forest 
resources, reduction of arable land area, loss of 
biodiversity and ecosystem services in tea growing 
areas (Xu et al. 2020; Liu et al. 2016). In order to 
effectively supervise tea plantations, protect the red 

line of cultivated land, and avert natural disasters, it is 
crucial for government departments to have quick and 
accurate access to the distribution range of tea 
plantations.  

Remote sensing is frequently utilized to gather 
crop information, and there are limited studies on the 
use of remote sensing images for tea plantation 

identification and classification. Tea is an evergreen 
perennial plant, which makes it challenging to identify 

tea plantations on remote sensing images (Xu et al. 
2018). Currently, the primary solution is to use the 
spectral contrast between various time periods or the 
contrast of vegetation index features for extraction 
(Zhu et al. 2019). However, tea is mainly grown in the 
tropical subtropical highland region, where there is a 
higher probability of cloudy and rainy weather. 
Additionally, there is a problem with the lack of 

optical remote sensing data, making it difficult to 
identify tea plantations using only spectral features or 
vegetation index features (Yusoff et al. 2017). Tea 
plantations are fragmented and complex, and the 
identification results often differ greatly from the field. 
In the research of remote sensing identification and 
classification, increasing the dimension of feature 
variables can improve the classification accuracy, but 

too many feature variables will cause information 
redundancy and reduce the classification accuracy 
(Wang et al. 2019). In this paper, to address some 
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existing problems, Sentinel-1 and Sentinel-2 images 
were used as data sources, and object-oriented random 
forest algorithm was used to identify and extract tea 
plantation areas in Shuangjiang County, Yunnan 
Province, China. Seven feature combinations were 
designed to explore the influence degree of red edge 
features, radar features and texture features on the 

identification accuracy of tea plantations, to verify the 
feasibility of Jeffries-Matusita distance and recursive 
feature elimination feature selection algorithm, and to 
acquire the distribution of tea plantations in the study 
area. 

2 STUDY AREA AND DATA  

2.1 Study Area 

Lahu-Va-Blang-Dai Autonomous County of 
Shuangjiang, Lincang City, Yunnan Province is 
located in Yunnan-Guizhou Plateau of China with 

geographic coordinates of 99°35′15″E－100°90′33″E 

and 23°11′58″N － 23°48′50″N. The climate of 

Shuangjiang County is subtropical monsoon climate, 
with an average annual temperature of 20.2℃, an 
average annual rainfall of 1000~1200 mm, and an 
annual sunshine time of 2222 hours. The natural 
conditions of the study area are very suitable for the 
development of tea planting, and it was selected into 
the "China's Top 100 Tea Counties List" in 2020. The 

study area is a typical plateau agricultural area with 
highland mountainous terrain, complex crop 
cultivation structure and finely divided plots.  

2.2 Data 

The Sentinel-1 (S1) and Sentinel-2 (S2) data used in 
this study were downloaded from Copernicus Open 
Access Hub (https://scihub.copernicus.eu/). A total of 
six Sentinel-1A interferometric wide-field imaging 
mode (IW) GRD images were selected from March to 
August 2021, with dual polarization of VV and VH. 
The Sentinel-2B Level-2A four cloud-free images 

covering the study area on February 23, 2021 was 
selected. The SNAP software was used for pre-
processing. The processed S1 and S2 data were 
resampling to 10m resolution, UTM 47N was selected 
as the projection coordinate system, and the S1 and S2 
data were registered, clipped, stacked and extracted 
features in ENVI. The data list of this study is shown 
in Table 1. 

 

Table 1. Remote sensing data and sensing times 

Platform Sensing data 

Sentinel-2 2021-02-23 

Sentinel-1 
2021-03-11, 2021-04-16, 
2021-05-22, 2021-06-15, 

2021-07-09, 2021-08-14 

The training and validation samples were selected 
based on the surface coverage classification data and 
Google high-resolution images as the basis for 
classification and accuracy verification. The land 
cover data was adopted from Global 30-m land-cover 
dynamic monitoring products with fine classification 
system released by Aerospace Information Research 

Institute，Chinese Academy of Sciences, and the data 

was acquired from the Big Earth Data Science 

Engineering Program website 
(http://data.casearth.cn/). Google high-resolution 

images were acquired from Google Earth，and the 

sensing time is February 2021. 

3 METHODS  

This study aimed to acquire the distribution of tea 

plantations in the study area. The study methods 
included the construction of the feature combination, 
classification algorithm, feature selection algorithm, 
sample selection and accuracy evaluation. The 
flowchart for the tea plantation identification method 
of this study is shown in Fig1. 

Sentinel-1 Sentinel-2

Multiresolution segmentation

Feature types

Spectral features Texture features

Rader features Water features

Vegetation features

Red edge features

Feature combinations

FC1: Spectral features + Vegetation features + Water 

features

FC2: FC1 + Red edge 

features

FC3: FC1 + Rader 

features

FC4: FC1 + Texture 

features
FC5: All features

FC6: JM feature selection
FC7: RFE feature 

selection

Landcover data & 

Google Earth images

Samples collectionFeature selection

Random forest classification Training samples

Validation samplesAccuracy assessment

Best classification result  

Fig.1 Flowchart for the tea plantation identification 
method. 

3.1 Feature Combination  

We acquired 53 feature variables from the processed 
S1 and S2 data, including spectral features, vegetation 

features, water features, red-edge features, texture 
features, and radar features. 

The spectral features include B1-B4, B8-B12 of 
S2. The vegetation features include: normalized 
difference vegetation index, enhanced vegetation 
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index, modified soil adjusted vegetation Index, green 
normalized difference vegetation index (Frampton et 
al. 2013). Water features include: modified normalized 
difference water index, normalized difference water 
index (Zhang et al. 2021). Red-edge features include: 
B5-B7 of S2, normalized difference vegetation index 
red-edge 1, normalized difference vegetation index 

red-edge 2, normalized difference vegetation index 
red-edge 3, MERIS terrestrial chlorophyll index, 
chlorophyll index red-edge, modified simple ratio red-
edge, red-edge position index (Fernandez-Manso et al. 
2016; Frampton et al. 2013).B5, B6, and B7 of S2 are 
added to the red-edge features in order to examine the 
effect of red-edge features on classification accuracy. 
For texture features, we calculated the gray-level co-

occurrence matrix (Qu et al. 2022) of the S1 and S2 
image with a 3 × 3 filtering window to acquire 16 
texture features. The radar features consist of the VV 
and VH polarizations in six images of S1, for a total of 
12 features. Seven feature combinations were designed 
to identify and compare the identification results, 
including FC1: Spectral features + Vegetation features 
+ Water features; FC2: FC1 + Red edge features; FC3: 

FC1 + Rader features; FC4: FC1 + Texture features; 
FC5: All features; FC6: JM feature selection; FC7: 
RFE feature selection.  

3.2 Classification Algorithm 

The random forest algorithm is a machine learning 
algorithm based on CART decision trees (Breiman, 
2001). When the RF algorithm classifies, a randomly 
drawn sample from the sample set with put-back 
builds a decision tree constituting a random forest, and 
the classification result of the object to be classified is 
decided by multiple decision trees voting. The object-

oriented classification method requires segmentation 
of images before classification. A multiresolution 
segmentation algorithm (Baatz et al, 2000) is used to 
segment the image in eCognition 9.0 software, with a 
segmentation scale of 60. 

In a process of RF classification, two basic 
parameters are required to generate a prediction model 
(Gao et al. 2015), the number of trees in a forest 

(ntree) and the number of prediction variables for use 
at each split to grow a decision tree (mtry). The 
random forest model was established and optimized 
based on the python open source toolkit scikit-learn. In 
this paper, mtry selects the default value, the square 
root of the number of features. 5-Fold cross-validation 
was used to evaluate the best parameters to improve 
the efficiency of the RF classifier when constructing 
the RF algorithm. We verified 7 feature combinations 

of features separately and averaged the results 
acquired, and finally acquired the most appropriate 
ntree value of 73. 

3.3 Feature Selection Algorithm  

In random forest classification, adding features can 
improve the classification accuracy, but too many 
features added can cause information redundancy to 
reduce the classification accuracy, so it is important to 
control the number of features to reduce information 
redundancy. In this study, we use J-M distance and 

recursive feature elimination algorithm for feature 
selection. 

1) Jeffries-Matusita Distance 
The Jeffries-Matusita (JM) distance is used to 

statistics separability criterion, and determine the best 
feature combination based on the results (Cheng et al, 
2022). The definition of the JM distance is as follows: 

2(1 )BJM e−= −  (1) 

In the formula, B represents the Bavarian distance 

between two categories on a feature. The definition of 
the Bavarian distance is as follows: 

2 2
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1 2 2 2

1 2 1 2
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In the formula, 
1e  and 

2e  represents the feature 

value mean of the two categories, 
1  and 

2  represent 

the feature value standard deviation of the two 
categories. The main purpose of this paper is to 
identify tea plantations, so only the JM distances 

between tea plantations and other land cover types are 
calculated. 

 
Fig.2 Variation of accuracy with increasing features 

(JM distance). 
 

According to formula (1) and (2) to calculate the 
JM distance of all features, according to the JM 
distance value of the features in decreasing order into 
the RF classification model for the identification of tea 
plantations, to observe the changes in user accuracy 
and producer accuracy of tea plantations (Fig2). The 
accuracy reached the highest when the number of 

features is 45, after which the accuracy will not exceed 
this value as the number of features continues to 
increase. Therefore, the 45 features with higher JM 
distance were added to FC6. 
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2) Recursive Feature Elimination 
The Recursive Feature Elimination (RFE) is 

trained on the initial feature space in the classification 
algorithm model, evaluates the importance of the 
features involved in the training, repeatedly builds the 
model to exclude the least important features until the 
optimal feature space is filtered (Qu et al. 2022). In 

random forest classification, the Gini coefficient can 
usually be used to evaluate feature importance. The 
average change in the node-splitting Gini index of the 
corresponding feature in each tree is used as a scoring 
indicator (Raschka, 2015). 

In this study, the Gini coefficient is used to 
evaluate the importance of feature variables, and the 
definition of the Gini coefficient is as follows: 

21 ( / )
C

Gini p C N= −  (3) 

where C is the number of classes, N is the number 

of trees, and p represents the probability of belonging 
to C. 

FC7 was determined with RFE, and the prediction 
accuracy of the classifier is evaluated using 5-kold 
cross-validation, as shown in the Fig.3, when the 
number of features equals to 40, the prediction 
accuracy of the classifier reaches the highest, and then 
decreases as the number of features continues to 

increase. Therefore, after the RFE feature selection 
algorithm, a feature combination with 40 features is 
acquired. 

 

 
Fig.3 Variation of accuracy with increasing features 
(RFE).  

 
3.4 Sample Selection and Accuracy Evaluation 

In the study area, samples were selected for 
classification and validation by combining surface 
coverage fine classification data, Google high-
resolution images and Sentinel-2 images. The study 
area was classified five land cover types: build-up 
land, forest, tea plantations, cropland, and water body. 
We randomly selected a total of 1309 segmentation 
objects as training samples based on the distribution of 

land cover types in the study area, with 158223 pixels 

for the tea plantation. The validation samples were 
generated using ArcGIS 10.8 to generate 3500 random 
points in the study area and visually interpreted to 
assign feature attributes, of which 504 points were 
validated for the tea plantation. We use confusion 
matrix to verify the classification accuracy, and the 
evaluation indexes were overall accuracy (OA), kappa 

index of agreement (KIA), producer accuracy (PA) 
and user accuracy (UA).  

4 RESULTS 

4.1 Comparison and Analysis 

The classification accuracies of the seven feature 
combinations are shown in Table 2. It can be seen that 
a good classification results can be acquired by just 
constructing a features combination of spectral 

features, vegetation features, water features, but it 
cannot effectively identify tea plantations. The results 
of FC1-FC4 showed that: the addition of red-edge 
features and radar features improved the PA and UA of 
tea plantation identification by 13.69%, 5.25% and 
11.9%, 2.14%, respectively, compared with FC1; the 
feature combination constructed from spectral 
features, vegetation features, water features, and red-

edge features can greatly improve the identification 
ability of tea plantations; the combination of radar data 
and optical data can effectively improve the 
identification accuracy of tea plantations, and to a 
certain extent overcome the shortcomings of 
insufficient optical images in cloudy and rainy areas, 
and the accuracy of identifying tea plantations is better 
than using optical data only; affected by the 

inconspicuous texture due to the over-planting of tea 
trees in the study area, the texture features have a 
negative impact on the identification accuracy of tea 
plantations. 

Both feature selection algorithms can significantly 
improve the classification accuracy. The PA and UA of 
tea plantation identification after feature selection 
based on JM distance were 90.08% and 89.19%, 
respectively; the PA and UA of tea plantation 

identification after feature selection based on RFE 
algorithm were 91.07% and 89.47%, respectively. In 
contrast, the PA and UA of tea plantation identification 
with all 53 feature bands included in FC5 was 88.69% 
and 88.17%. The identification accuracy of the feature 
combination after the RFE selection was higher, and 
the information redundancy problem generated by too 
many features was effectively avoided. Therefore, 

RFE algorithm is a more appropriate feature selection 
algorithm for tea plantation identification. The 
classification results of FC7 were used as the final 
result of this study. 
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Table 2 Comparison of the accuracy assessment of seven feature combinations 

Combinations OA/% KIA   Build-up Tea plantation Cropland Forest Water body 

FC1 88.03 0.8 
PA/% 89.05 72.62 87.97 91.54 98.75 

UA/% 89.16 75.31 82.78 92.81 100.00 

FC2 90.86 0.85 
PA/% 89.53 86.31 89.47 92.22 100.00 

UA/% 90.59 80.56 86.44 95.18 100.00 

FC3 89.94 0.83 
PA/% 88.37 84.52 88.97 91.44 97.50 

UA/% 95.00 77.45 83.24 95.82 100.00 

FC4 88.66 0.81 
PA/% 93.02 63.10 90.48 93.70 98.75 

UA/% 91.95 81.33 83.08 91.80 100.00 

FC5 92.6 0.88 
PA/% 97.67 88.69 90.73 93.80 100.00 

UA/% 96.55 88.17 86.81 95.68 100.00 

FC6 92.49 0.87 
PA/% 96.51 90.08 90.10 93.55 100.00 

UA/% 94.32 89.19 85.60 95.86 100.00 

FC7 93.43 0.89 
PA/% 95.35 91.07 91.48 94.44 100.00 

UA/% 97.62 89.47 87.53 96.48 100.00 

 

 
Fig.4 The spatial distribution map and details of enlarged areas of land cover in this study area. (a, b, c) are the 
S2 image enlargements of the three regions marked as 1, 2, 3 in this map, respectively. (A, B, C) are the 
corresponding tea plantation identification results. 

 
4.3 Tea Plantation Identification Results 

Fig.4 shows the classification results of this study, and 
the identification results of tea plantations are 
randomly selected for detailed display. It can be seen 
that after multiresolution segmentation, a satisfactory 
segmentation result is achieved for forest, cropland 
and tea plantation, merging similar small areas and 
having clear boundaries with other vegetation types. 

Most of the tea plantation identification results 

basically match with the actual situation, and these 
results show that the feature combination after feature 
selection of RFE algorithm is effective in the 
classification of complex vegetation types in the 
southwest plateau region of China. This study provides 
a reference for remote sensing tea plantation 
identification in cloudy and rainy areas of southwest 
plateau of China. 
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5 DISCUSSION 

In this study, we used S1 SAR images and S2 optical 
images to identify the tea plantations. The addition of 
SAR images made up for the shortcomings of optical 
images, complemented the image information, and 
improved the classification accuracy. Red-edge 
features had an excellent effect on the identification 

accuracy of tea plantations. Using the object-oriented 
classification method, the images were segmented 
before classification. It effectively avoided the 
phenomenon of fragmentation of land cover type’s 
boundaries and made the boundaries between land 
cover types clear and more consistent with the real 
surface conditions. Compared to JM distance, RFE 
was more suitable for feature selection in tea 

plantation identification. In the subsequent research, 
image data with higher spatial resolution will be used 
to reduce the negative impact of texture features on tea 
plantation identification. 
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ABSTRACT- Accurate and timely crop mapping is crucial for various agricultural production and monitoring. 
Current supervised classification methods based on remote sensing heavily rely on ground-truth samples collected 
at high cost, and the years without sampling highly limits the classification work. To address such challenge, we 

proposed a time-migration method based on historical all-season training samples (2017, 2018, 2020) to conduct 
supervised crop classification mapping in the target year (2021) without ground-truth samples. We chose Hailun 
City, Heilongjiang Province of northeastern China as study site, whose major crop production include corn, 
soybeans, and rice. We reconstructed the time-series Sentinel-2 data, and selected the optimal spectro-temporal 
features based on the Gini coefficient to construct standard crop phenological curves. We calculated the similarity 
between the reference spectral and image spectral and designed the rules for tag matching by dynamic time 
warping algorithm and designed the rules for the label matching to detect and identify the change state of training 
sample pixels. We obtained the crop types of historical samples in the target year by this method. The results 
showed that the migration accuracy of the samples can reach 90%, used these samples as training data for the 

random forest to classify the target year, the overall accuracy can reach 93%. We proposed a new sample time 
migration method in this study, which can achieve efficient and mass migration of historical samples, which greatly 
reduced the cost in ground-truth sampling work. (Smith, 1987) 
 

 

1. INTRODUCTION 
 

Crop spatial distribution information is an important 
basis of crop growth monitoring, yield estimation and 
disaster assessment, as well as a significant support for 
the optimization and adjustment of regional crop 

cultivation structure and the government's macro 
decision making. Recently, remote sensing technology 
has become the main technical method for crop spatial 
distribution mapping. Currently, supervised 
classification strategies are mainly crop classification 
methods, which means that model training must use 
sample data. The ground samples are important inputs 
of the spectral and temporal characteristics in different 

bands of remote sensing images, their quality, quantity 
and spatial distribution directly affect the classification 
result (Maxwell A E,2019). However, those ground 
samples only apply train classifier in the mapping year. 
In previous agricultural mapping studies, very few 
classifiers could be applied to multiple years without 
year-to-year retraining and so the frequency of crop 
mapping was limited by reference data availability. 

Therefore, when cropland maps are needed, we need to 
recollect ground samples, which will cost considerable 
cost in time and labor resources. How to improve the 
efficiency of using historical samples to achieve 
sustainable classification tasks for other seasons 
without ground-truth samples is a hot topic of current 
research. 
There were many scholars has explored that using 

historical all-season training samples to conduct 
supervised crop classification mapping in the target 
year without ground-truth samples. Hao used immune 
neural network (ABNET) to construct the crop 
reference NDVI time series, and used ABNET to 
achieve the target year crop classification of Bole and 
Manas in Xinjiang, and the overall classification 
accuracy reached 87.13% and 83.48% (Hao,2016). 

Zhang used the random forest classifier to classify 
historical years with ground-truth samples, and 
extracted the pixels with the same in all historical years 
as potential samples. The result showed that the average 
classification accuracy was about 80% (Zhang,2019). 
Friesz used over 11 million samples to train a 
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classification tree algorithm and develop a crop 
classification model (CCM). The CCM performed well 
against a withheld test data set with a model prediction 
accuracy of over 90% (Friesz,2017). However, there 
are still some problems, on the one hand, the crop 
sowing time has changed between years due to climate 
and the crop weather curve has shifted, on the other 

hand, in some areas with frequent crop rotation are 
limited. 
The objective of this study was to present a robust 
automated classification approach to map soybean and 
corn repeatedly, consistently and efficiently at low cost. 
We used phenological metrics in crop classification for 
cross-year classifier extension, which applies a 
universal set of rules to multiple years. 
 

2 STUDY AREA AND DATA 
 

2.1 Study area 
 

Our study area is Hailun, where is located in the 

Songnen Plain (46°58′~47°52′N, 126°14′~127°45′E) in 
the north-central part of Heilongjiang Province, with an 
area of 4667 km2 and 31.67 hm2 of arable land. The 
crop cultivation structure of Hailun is relatively stable, 
with the main production of soybean, corn and rice. 
According to the statistics in 2020, the sown area of the 
three crops accounted for 97.8% of the total grain sown 
area, and the planting area of other crops was very 

small, so this crop distribution in Hailun city is very 
similar to the planting structure of Heilongjiang 
province. Due to temperature conditions, crops in the 
study area are usually grown one season per year. Rice 
is mostly cultivated in the main season between the 
spring and summer, approximately from April to 
October. Corn is mainly sown in the first half of May 
and harvested in the first half of October. Soybeans and 
corn are harvested at the same time, but soybeans are 

planted about ten days later than corn. The rotation 
between soybean and corn is very common in the 
croplands. Other crops include wheat, peanut 
,vegetables, and so forth. Rice, soybean and corn 
comprise over 95% of the total area of annual crops. 
 

2.2 Data and processin 
 

2.2.1 Satellite images 
 

To further reduce cloud pollution, we screened the 
images for cloudiness <30% on the GEE platform and 
chose a time interval from late April to late October 
each year, covering the entire growing period of major 

crops. In order to eliminate noise and obtain images at 
equal time intervals, we used the traditional 10-day 
maximum synthesis method to ensure that the different 
stages of the crop growth period are covered with 
corresponding images. 

 
Figure1 S2-A/B Data distribution 
 
2.2.2 Ground reference data 
 
In order to obtain the main types of crop mapping in the 
study area, a ground-based field survey 

was conducted in 2017, 2018, 2020, 2021. We 
measured by handheld Global Positioning 
System(GPS) and recorded the crop type by taking 
pictures with our smartphones. In addition, we also 
selected some non-arable samples on Google Earth to 
facilitate the work of our classifier, such as water 
bodies, buildings, woodland and roads. Our main 
purpose is to focus on cultivated land samples, and 

these non-cultivated land samples are only used as 
auxiliary data to make our classification results more 
consistent with the real situation. 
The survey contains mainly rice, corn, soybean and 
other crops. Since this study focuses on the mapping of 
main crops in Hailun, various other crop types were 
merged into a class called “other”. 
Rice, corn and soybeans are the main crops, and other 

crops contain small crops such as wheat and peanuts. 
The largest number of samples collected in 2018 
reached 647, and the smallest was 490 samples in 2020. 
 

 
Figure 2 Study area and sample distribution 
 
3 METHODS 

A viable approach is to distinguish crop types based on 
seasonal characteristics of crop growth indicated by 
satellite-based vegetation indices (Dong,2020). Among 
the many ways to deal with time series data, there is 
increasing evidence that the classic DTW measure is the 
best measure in most domains. DTW is a measure of 
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the similarity of two time series of different lengths, 
using dynamic programming techniques to find the 
minimum distance between two time series, where the 
series are distorted by stretching or shrinking the time 
dimension. Annual changes of phenological cycles 
caused by weather or by variations in the agricultural 
practices. DTW proved to be an efficient solution to 

handle this challenge (Sakoe,1978).  
We first constructed multiple feature curves and 
extracted the standard curves of major crops as the 
reference curves respectively, and then extracted the 
curve of that sample in the target year as the target 
curve.  
The distance between the two was calculated by DTW 
for label matching, and the smaller the distance is, the 

greater the similarity between the two curves.  
Unlike the conventional setting of threshold 
classification, we focused on considering relative 
values when performing matching, so that we can 
ensured that enough samples have labels, and also set 
up a voting mechanism to ensure the correct rate of 
sample migration. Due to the small and diverse area of 
other crops, it was too difficult to extract the standard 

curve of this category, and we set the threshold and 
extracted it based on its maximum cumulative distance 
and low consistency with the curves of rice, corn, and 
soybean 
 

 
Figure 3 Sample migration and classification process 
 
4 RESULT 

 
4.1 Classifier Comparison 
 
We have selected random forests and support vector 
machines among the commonly used machine learning 
models for comparison. We conducted a comparison 
experiment for each year separately to test which model 
performed better and then used it as our subsequent 
choice. In the experiment, 70% of the samples were 

used as the training set and 30% as the validation set, 
and the overall accuracy and kappa were used to 
evaluate the classification results. 
The results showed that random forest accuracy was the 
highest and stable, with OA above 98%. SVM has poor 
classification accuracy, especially in 2020, which was 
only 66.4%. (Table 1) 

 
Table 1 Accuracy of SVM and RF classification for 
different years 

 SVM RF 

Year OA Kappa OA Kappa 

2017 83.78% 0.80 99.72% 0.99 
2018 80.71% 0.75 99.21% 0.99 
2020 66.4% 0.56 98.13% 0.98 

 
4.2 Comparison of single year curves and multi-year 
convergence curves 
 

The extracted crop phenology curves for each year were 
used as reference curves respectively, and the curves 
extracted from the real samples in 2021 were used as 
target curves, and the real labels to verify the accuracy 
of our method. We examined the migration accuracy of 
various crops by F1-Score. It was verified that the 
single-year curves had the best migration accuracy of 
the questions in 2017 and the worst in 2020. 

Different types of crops have different levels of 
recognition difficulty. Rice has the highest recognition 
accuracy, with scores above all 0.91, and the highest 
was 2020 (0.98). The recognition accuracy of other 
crops was generally lower, all between 0.65-0.8. The 
identification accuracy of corn and soybean was 
relatively close, but the 2020 curve did not perform  
well in distinguishing between the two, while the 
accuracy was more stable in all other years above 0.9. 

The migration accuracy of the fused multi-year curves 
obtained by linear interpolation was generally higher 
than that of the single-year curves. The accuracy was 
above 0.95 for rice, corn and soybean recognition, and 
can reach 0.72 for other crops. The fused curves take 
into account more physical information and are better 
matched with the target curves after linear 
interpolation. 

 
4.3 Classifier classification 
 
Our method has been tested with good results. Next, we 
migrated all our existing samples to the target year 
(2021) for classification. Due to cloud pollution, we 
were not able to migrate all the samples completely, but 
these samples were sufficient to support our next 

classification task. The entire real sample of 2021 will 
be used to verify our classification accuracy. We also 
designed the effect of the combination of single-year 
and multi-year sample approaches on classification 
accuracy. 
In the single-year comparison, the 2018 migrated 
samples had the highest classification accuracy 
(87.32%) and also the highest number of samples 

migrated. The accuracy is obviously higher when we 
input all the migrated samples into the classifier, which 
we can achieve an accuracy of 91.56%. 
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Table 2 Classification results of sample migration in different years 

Sample Source Number of valid samples OA Kappa  

2017 166 86.55 0.83  

2018 216 92.61 0.91  

2020 186 68.47 0.65  

2017、2018、2020 568 91.13 0.90  

 

Figure 4 Classification accuracy of random forest for samples of different years (2017,a), (2018,b), (2020,c), 

(2017、2018、2020,d) 
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ABSTRACT-Vegetation photosynthesis model (VPM) is a widely used model for calculating Gross Primary 
Productivity (GPP). Many studies have shown that it has a good effect in calculating GPP for most Vegetation 
types. However, the estimation accuracy of the VPM model is not high for regions with long cloudy weather, such 

as Xishuangbanna tropical seasonal rainforest. This paper develops a VPM model for estimating GPP under 
cloudy conditions, which mainly corrects the two parameters, Wscalar and EVI, which are greatly affected by 
clouds in the model. First, the water stress factor Wscalar is replaced by Evaporation Fraction (EF). Secondly, 
using the good correlation between near surface temperature and EVI, the conversion coefficient between near 
surface temperature and EVI is fitted to achieve the effective reconstruction of EVI polluted by clouds. The 
correction of the two factors improves the estimation accuracy of the VPM model, and the comparison with GPP 
4-year site observations shows that the correction of EVI have a better improvement, with an increase of 0.22 in 
R2 compared with the pre-correction, and the correction of Wscalar is increased by 0.11 in R2. In order to verify 
the proposed method, the in-situ observation data of the Xishuangbanna flux site from 2007 to 2010 are used. 

The results show that the proposed method effectively improves the accuracy of GPP estimated by the VPM 
model, especially in 2007, when the sky is heavily contaminated by clouds, and the improvement is significant, 
with R2 increases from 0.2 to 0.82. In general, the accuracy of GPP estimated by the proposed method has been 
significantly improved, with RMSE (gC·m-2·8 day-1) decreases from 15, 14.4, 18.1, 14.2 to 8.07, 6.56, 10.33, 
11.44, respectively. Therefore, the proposed method can be used to estimate GPP of tropical seasonal rainforest 
in Xishuangbanna. 

Keywords: Gross primary productivity, Tropical seasonal rainforest, Vegetation photosynthesis model, Eddy 
covariance. 

 
1 INTRODUCTION 

The gross primary productivity (GPP) of terrestrial 
ecosystems is a key parameter to quantitatively 
characterize carbon sink/carbon source. It represents 
the productivity of a specific region or ecosystem, and 
also reflects the growth characteristics and health 
status of regional vegetation or ecosystem.  Therefore, 

accurate estimation of GPP is of great significance for 
providing data basis for carbon balance study of a 
region or ecosystem.  Tropical rainforests account for 
12% of the terrestrial ecosystem carbon cycle (Lieth 
and Whittaker, 1975; Malhi et al., 1998) is an 
important part that cannot be ignored, and its species 
quantity and biological productivity are more abundant 
than other ecosystems.  Therefore, accurate GPP 

inversion can provide a data basis for the study of the 
carbon budget of the tropical seasonal rainforest 
ecosystem, which is of great significance.   

At present, all models have poor estimation 
performance in tropical rainforests (Lin et al., 2018), 
the estimated GPP correlation R2 of savannas, shrubs, 

and evergreen broad-leaved forests distributed in 
tropical areas are generally lower than 0.3, and RMSE 
is about 3gC/m2/d (Huete et al., 2008; Ma et al., 2014; 
Sjöström et al., 2013). The unique climate of 
Xishuangbanna tropical seasonal rainforest makes it 
have an obvious dry season and rainy season within a 
year. In the dry season, the cold air from the north can 

hardly reach Xishuangbanna due to the blocking effect 
of Ailao Mountain and Wuliang Mountain. Therefore, 
in the dry season (November to April of the following 
year), the air is dry, the rainfall is scarce, and the sky is 
clear. (Ham, 1982). Although there is forest fog, it can 
completely dissipate before noon. Continuous rain 
cumulus clouds during the rainy season cause 
excessive errors in optical remote sensing. In this case, 

based on the existing remote sensing data and flux 
data, this paper improves the vegetation 
photosynthesis model (VPM) model suitable for 
Xishuangbanna tropical rainforest, eliminates the 
errors of optical remote sensing in the rainy season, 
improves the accuracy of evaluation, and aims to 
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improve the accuracy of estimating GPP in tropical 
rainforest and provide accurate evaluation of terrestrial 
ecosystem carbon cycle. 

2 STUDY AREA 

The research area is located in Xishuangbanna 
National Nature Reserve in Mengla County, Dai 
Autonomous Prefecture of Xishuangbanna, Yunnan 
Province. This area is located on the northernmost 
edge of the tropical rainforest in Southeast Asia and is 

also an important tropical rainforest concentrated 
distribution area in China. The climate is affected by 
the geographical location and is subject to the risk 
control system of the Southwest season all year round. 
It belongs to the north tropical monsoon climate 
(Zhang et al., 2006). The climate in the study area is 
highly seasonal, with distinct dry and wet seasons. The 
precipitation in the rainy season (May to October) is 
concentrated, and 87% of the annual precipitation 

occurs in this season. The precipitation in the dry 
season is less, but the phenomenon of forest fog is 
obvious, fog and fog water greatly make up for the 
lack of rainfall (Liu et al., 2005). Therefore, due to the 
influence of forest fog, the dry season can be further 
divided into the fog-cool season (November to 
February) and the dry-hot season (March to April). 
The unique climate resulted in the unique phenology 

of deciduous canopy in April and new leaves before 
July in the study area (Tan et al., 2014). 

3. DATA AND METHOD 

3.1 Data and Processing 

The meteorological data and flux data used in this 
study are obtained from the Xishuangbanna station 
through the National Ecological Science Data Center 
(http://www.cnern.org.cn/). The flux data set has been 
processed by unified quality control and data 
interpolation, which has high reliability. In order to 
match the remote sensing data used in the model 

(MODIS, 8D time resolution), the daily latent heat 
(LH), daily sensible heat (H), daily photosynthetically 
active radiation (PAR), daily ecosystem respiration 
(Re), daily net ecosystem exchange (NEE), daytime 
half-hour PAR and daytime half-hour NEE data are 
accumulated into the sum of 8 days, and the average 
temperature of 8 days is obtained from the daily 
average temperature. MODIS data are used to 

calculate enhanced vegetation index (EVI) and 
normalized difference vegetation index (NDVI) in four 
bands: blue (459-479 nm), red (620-670 nm), near 
infrared (841-875 nm), and shortwave infrared (1628-
1652 nm) in MOD09A1 product provided by google 
earth engine (GEE) platform. Additionally, the 
HANTS filter is used to eliminate noise from the 
downloaded remote sensing data. 

3.2 Brief Introduction of the VPM Correction Model 

VPM model is a combination of eddy flux 
observation data and remote sensing data ecosystem 
primary productivity estimation model (Xiao et al., 
2004), it assumes that the blades and the forest canopy 
by active photosynthesis of vegetation (PAV, mainly 
chloroplasts) and non-vegetation photosynthesis (NPV, 

mainly aging leaves, branches, and stem) of (Li et al., 
2007). The general form of the VPM model is as 
follows: 

 PAVGPP FAPAR PARg=    (1) 

 0 scalar scalar scalarg T W P =     (2) 
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where PAR is the photosynthetically active 
radiation (μmol/m2/s, photosynthetic photon flux 
density, PPFD), FAPARPAV is the fraction of PAR 
absorbed by PAV (chloroplasts), εg is the light use 

efficiency (gC/mol PAR). The parameter ε0 is the 
apparent quantum yield or maximum light use 
efficiency (gC/mol PAR), and Tscalar, Wscalar, and Pscalar 
are the down-regulation scalars for the effects of 
temperature, water, and leaf phenology on the light use 
efficiency of vegetation, respectively. Tmin, Tmax, and 
Topt are minimum, maximum, and optimal 
temperatures for photosynthetic activities, 

respectively. 
This paper develops a VPM model for estimating 

GPP under cloudy conditions, which mainly corrects 
the two parameters, Wscalar and EVI, that are greatly 
affected by clouds in the model. First, the water stress 
factor Wscalar is replaced by Evaporation Fraction (EF). 
Secondly, using the good correlation between near 
surface temperature and EVI, the conversion 

coefficient between near surface temperature and EVI 
is fitted to achieve the effective reconstruction of EVI 
polluted by clouds. In addition, new leaves are 
growing in Xishuangbanna tropical seasonal rainforest 
all year round, so Pscalar is set to 1. The form of the 
VPM correction model is as follows: 

 corGPP EVI PARg=    (6) 

 0 scalar EFg T =    (7) 

 
LE

EF=
LE H+

 (8) 
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where LE is latent heat flux (W m-2) measured by 
the eddy covariance (EC) tower, and H is sensible heat 
flux (W m-2). 

3.3 Parameter Estimation of the VPM Correction 
Model 

1) Estimating canopy-level light use efficiency (εg) 
parameter 

NEE and PAR conform to the Michaelis-Menten 
function. The maximum light use efficiency (ε0) of 

vegetation can be obtained by estimating linear or 
nonlinear models between them. Common nonlinear 
models include the rectangular hyperbola model, non-
rectangular hyperbola model, and hyperbola modified 
model. According to the light response curve, light is 
the main limiting factor of photosynthesis under non-
strong light conditions, and the linear relationship is 
obvious. Therefore, in this study, half an hour of 
daytime data under non-strong light conditions 

(0<PAR<1200μmol/m2/s) is selected for monthly 
linear model fitting, and the month with the best fitting 
effect is selected in the growing season (From May to 
October every year) to obtain ε0 parameters (Table 1): 

 NEE= PPFD R  −  (9)                      

where α is the slope of linear fitting, and its value 
represents maximum light use efficiency, PPFD is 
photosynthetic photon flux density, and R is ecosystem 
respiration. According to Table 1, Xishuangbanna 

tropical seasonal rainforest is best fitted in June 2009, 
with a maximum light use efficiency of 0.54 gC/mol 
PAR. 

The temperature stress factor and water stress 
factor are calculated according to Equation (3) and 
Equation (8), respectively. 

 
Table 1 Comparison of the maximum light use 

efficiency (ε0, gC/mol PAR) fit for each growing season 
(May to October) from 2007 to 2010 

 2007  2008  2009  2010 

 ε0  R2  ε0  R2  ε0  R2  ε0  R2 

May 0.47  0.22  0.52  0.26  0.43  0.29  0.40  0.15 

June 0.49  0.19  0.55  0.24  0.54  0.42  0.45  0.12 

July 0.72  0.30  0.64  0.29  0.61  0.41  0.60  0.28 

August 0.54  0.16  0.68  0.32  0.59  0.35  0.63  0.37 

September 0.57  0.27  0.60  0.35  0.47  0.39  0.62  0.39 

October 0.61  0.3  0.53  0.29  0.36  0.33  0.60  0.36 

 
2) Correction of EVI 
The correlation factors used for EVI fitting must 

not be affected by rainy season clouds, so clear-sky 
data (dry season) from 2007 to 2010 are chosen for the 
fitting. Therefore, four years (2007 to 2010) of EVI, 
PAR, EF, and near surface temperature Tair are selected 
for Pearson correlation analysis, and the results are 
shown in Fig.1.  

As shown in Fig. 1, the best correlation between 
Tair and EVI is obtained under clear sky conditions. 
Therefore, Tair and EVI for the 4-year dry season were 
used to construct fitting equations and interpolate EVI 
for the rainy season. Fig.2 shows the fitting results and 
Fig.3 shows the interpolation replacement results. 

 
Fig.1 Pearson correlation of EVI and different 
correlation factors under clear sky. 

 
Fig.2 Fitted curves of EVI and near surface air 
temperature under clear sky. 

 
Fig.3 Comparison of EVI time series curves before 
and after interpolation. The solid line represents the 
original EVI time series filtered by HANTS, and the 
dashed line represents the EVI time series after fitting 
replacement.
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Table 2 
Comparison of dry/rainy seasons and full year before and after model correction for different years 
(RMSE unit: gC·m-2·8day-1) 

  dry season  rainy season  full year 

  R2  RMSE  R2  RMSE  R2  RMSE 

  VPM  VPMcor  VPM  VPMcor  VPM  VPMcor  VPM  VPMcor  VPM  VPMcor  VPM  VPMcor 

2007  0.43  0.64  10.72  6.98  0.05  0.40  19.52  10.06  0.17  0.77  15.00  8.07 

2008  0.63  0.80  10.99  6.18  0.08  0.20  16.10  7.63  0.33  0.82  14.4  6.56 

2009  0.52  0.56  14.53  10.54  0.03  0.30  23.04  9.56  0.33  0.70  18.10  10.33 

2010  0.73  0.60  6.77  6.92  0.03  0.14  19.94  9.53  0.37  0.63  14.20  11.44 

 
Fig.4 Comparisons of GPPVPM (first row), GPPcor (second row) at 8-day time scales for Xishuangbanna site 
observations. Dashed lines are 1:1 lines. Solid lines are linearly-fitted lines. 

 

4 RESULTS AND DISCUSSION 

4.1 Comparison of VPM Model and VPM Correction 
Model 

Comparing the estimation accuracy of two models 
in different years and dry/rainy seasons, the results are 
shown in Table 2 and Fig.4. The GPP estimated by the 
VPM model is denoted as GPPVPM, the GPP estimated 
by the correction model is denoted as GPPcor, and the 

measured value of GPP is denoted as GPPobs. 
From Table 2, the effect of the dry season 

estimation is better than the rainy season. In the dry 
season, the difference between the two models is not 
significant, and GPPVPM even outperformed GPPcor in 
2010, which indicates that the VPM model can 
accurately reflect the GPP of vegetation in most cases. 

GPPVPM is significantly lower than GPPcor in the rainy 
season, with R2 no greater than 0.1 and extremely poor 
correlation, which proves that the influence of clouds 
in the rainy season is not negligible. GPPcor 
significantly improved this phenomenon, and its R2 
improved to 0.2 - 0.3 in the rainy season. In general, 
GPPcor can better simulate the seasonal variation 
phenomenon of low GPP values in spring and winter 

and high GPP values in summer. The 4-year R2 is 0.77, 
0.82, 0.7, and 0.63, which are 0.6, 0.49, 0.37, and 0.26 
higher than GPPVPM, respectively. The R2 of the GPP 
estimated by the corrected model is 0.6 - 0.8, 
indicating that the model can eliminate the influence 
of rainy season clouds to a certain extent and 
reasonably estimate the GPP of Xishuangbanna 
tropical seasonal rainforest. 
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As shown in Fig. 4, the accuracy of GPP estimated 
by VPMcor in the Xishuangbanna tropical seasonal 
rainforest is higher than that of the VPM model 
compared with the observed GPPobs. The GPPVPM 
distribution was more dispersed, especially when 
GPPobs are higher than 50 gC·m-2·8day-1, which is the 
main reason for the lower overall R2 of GPPVPM. These 

points correspond to the rainy season of the 
Xishuangbanna tropical seasonal rainforest, when 
GPPobs reaches its peak and GPPVPM is at a low value, 
so GPPVPM appears significantly dispersed. When 
GPPobs are higher than 50 gC·m-2·8day-1, GPPcor still 
maintains a good linear relationship, proving a 
significant improvement to the VPM model. 

4.2 Comparison of Correction Effect of Two Factors 

Comparing the effect of two corrections on the 
accuracy improvement of VPM models for different 
years and 4 years. 

 
Table 3 Comparison of the effect of correction of two 
factors on the accuracy improvement of VPM model in 
different years and 4 years (RMSE unit: gC·m-2·8day-1) 

 VPM  Wscalar  EVIcor 

 R2  RMSE  R2  RMSE  R2  RMSE 

2007 0.17  15.02  0.39  11.78  0.52  11.89 
2008 0.33  14.36  0.50  10.59  0.58  11.52 
2009 0.33  18.09  0.40  14.64  0.61  13.05 
2010 0.38  15.31  0.44  12.21  0.60  13.29 

4years 0.20  17.49  0.31  13.84  0.42  15.09 

 
As shown in Table 3, both corrections improve the 

estimation accuracy of VPM model in Xishuangbanna 
tropical seasonal rainforest to different degrees. The 
accuracy improvement effect fluctuates in different 
years due to different hydrothermal and 
meteorological conditions. The two correction effects 
are most significant in 2007, with model R2 improving 
by 0.22 and 0.35, respectively. The correction effects 
of water stress factors are not significant in 2009 and 
2010, with model R2 improving by 0.06 and 0.07, 

while the correction effect for EVI improves steadily 
in each year. In general, the accuracy improvement of 
EVI correction is stable and significant, while the 
accuracy of the model corrected for water stress factor 
improved somewhat but fluctuated depending on the 
hydrothermal and meteorological conditions of the 
year. The four-year data also confirm the above 
findings, with the two correction models improving R2 

by 0.25 and 0.11, respectively. Therefore, improving 
optical remote sensing data is the key to improving the 
accuracy of VPM model estimation in Xishuangbanna 
tropical seasonal rainforest. 

 
 

5 CONCLUSIONS 

In this study, the VPM model has been corrected to 
improve the estimation accuracy of the VPM model in 
the Xishuangbanna tropical seasonal rainforest, in 
order to address the issue of GPP excessive estimation 
errors caused by cloud influence. The specific 
correction methods included water stress factor 

replacement and EVI fitting replacement. The 
accuracy of the corrected model have been greatly 
improved in four representative years. The results 
showed that 1) the influence of clouds in the rainy 
season in Xishuangbanna tropical seasonal rainforest 
is the main reason for the excessive estimation errors 
of the VPM model, and how to eliminate the influence 
of clouds is the key to improve the accuracy of the 

model with optical remote sensing as the input 
parameter. 2) The accuracy of the VPM model was 
improved by two correction processes. The 4-year R2 
increases by 0.6, 0.49, 0.37, and 0.26, respectively, 
and the 4-year RMSE decreases by 6.93, 7.84, 7.77, 
and 2.76, respectively. These results indicated that the 
corrected model has a better ability to estimate the 
GPP of Xishuangbanna tropical seasonal rainforest, 

and can better reflect the changes of GPPobs. 
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ABSTRACT – Fengyun-4A (FY-4A) is the latest generation of China's geostationary satellite, the Advanced 
Geosynchronous Radiation Imager (AGRI) on it can provide high-precision, high-frequency observation data, 
which provides new possibilities for the downwelling surface longwave radiation (DSLR) estimation with the high 
spatial and temporal resolution, but it only provides DSLR product under clear sky conditions. This work presents 
a new method for estimating DSLR under all-sky conditions using a genetic algorithm–artificial neural network 
(GA-ANN) algorithm based on brightness temperature (BT) from the FY-4A AGRI infrared channels and near-
surface air temperature and dew point temperature from ERA5 reanalysis data. According to the verification 
results of two independent observation sites, it is shown that the bias and RMSE are -4.31 W/m2 and 35.28 W/m2, 

respectively, which is better than the accuracy of clear-sky DSLR product provided by the FY-4A satellite. 
Compared with the CERES SYN all-sky DSLR product, the DSLR estimated by the new method is in good 
agreement with it, the bias and RMSE are 0.86 W/m2 and 26.87 W/m2, respectively, and the new method has a 
higher spatial resolution (4 km), which can display more details of spatial variation. 
Keywords: downwelling surface longwave radiation; FY-4A; ERA5; all-sky 
 
1 INTRODUCTION 
 

The downwelling surface longwave radiation (DSLR) 
is the driving force of the surface energy transport and 
exchange process and vitally important for the earth-
atmosphere energy exchange and the formation and 
change of climate. Accurately estimating the DSLR is 
of great significance to the research fields of 
meteorology, hydrology, ecology and so on (Tang and 
Li 2008; Trenberth et al. 2009). DSLR can be obtained 
from site observations or inversion using remote 

sensing data. With the development of remote sensing 
satellite technology, remote sensing satellites can 
provide data with high temporal and spatial continuity 
and spatial uniformity, which provides a new way for 
the inversion of DSLR at the regional and global scales. 
Therefore, satellite data are used for DSLR estimation, 
such as Moderate Resolution Imaging 
Spectroradiometer (MODIS), Cloud and Earth Radiant 

Energy System (CERES), etc., and a variety of DSLR 
estimation algorithms and products have been 
developed. A lot of attempts have been made to DSLR 
inversion methods based on remote sensing satellite 
data, but most of these methods focus on clear sky 
conditions and are relatively mature. At the same time, 

many algorithms have been developed for DSLR 
estimation under cloudy sky conditions, but due to the 

complexity of cloudy sky conditions, there are still 
large uncertainties in the DSLR estimation. 
The methods of DSLR estimation using remote sensing 
data under clear sky conditions are divided into 
parametric methods and hybrid methods. The 
parametric method uses the radiative transfer equation 
and statistical data to establish the mathematical 
relationship between the radiance at the top of the 
atmosphere (TOA) and the DSLR (Tang and Li 2008; 

Wang et al. 2017; Wang et al. 2014; Yan et al. 2016; 
Zhou et al. 2019a). The hybrid algorithm establishes the 
statistical regression relationship between 
meteorological parameters (such as air temperature and 
water vapor content) and DSLR (Nussbaumer and 
Pinker 2012; Yu et al. 2012; Yu et al. 2019; Zhou et al. 
2019b). For DSLR estimation under cloudy sky 
conditions, there are mainly two methods: one is an 

empirical algorithm by correcting or adding cloud 
parameters (Cheng et al. 2019; Liu et al. 2020; Rooney 
2005; Zhong et al. 2019); the other is using different 
cloud parameters (cloud base height, cloud base 
temperature, cloud top temperature) to establish a 
parameterized estimation algorithm or use a single-
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layer cloud model to estimate DSLR (Jiang et al. 2022; 
Wang et al. 2020; Wang et al. 2018; Yang and Cheng 
2020; Yang et al. 2022). In general, due to the large 
uncertainty in the estimation of cloud base height and 
cloud base temperature, DSLR estimation under cloudy 
sky conditions is still challenging. 
Most of the DSLR estimation methods mentioned 

above are developed based on polar-orbiting satellite 
data, but polar-orbiting satellites have low temporal 
resolution. At the same time, although geostationary 
satellites have high temporal resolution, there are few 
studies on DSLR estimation using them. As a 
geostationary satellite, Fengyun-4A (FY-4A) satellite 
can provide data with 1h time resolution, which 
provides new possibilities for DSLR estimation. 

However, the products provided by the FY-4A satellite 
only include DSLR products under clear sky 
conditions, and lack of DSLR products under all-sky 
conditions. Therefore, this study proposed a genetic 
algorithm–artificial neural network (GA-ANN) -based 
DSLR estimation method under all-sky conditions 
using the brightness temperature (BT) data of the FY-
4A thermal infrared channels and the near-surface air 

temperature and dew point temperature from the ERA5 
reanalysis data.  
 

2 DATA 
 

2.1 Satellite Data 
 

The FY-4A AGRI L1 Full Disk Data provides the 
reflectance (Channels 1-6) and BT (Channels 7-14) at 0 
min and 45 min of each hour, the band ranges, and 
primary purpose of channels 7-14 are detailed in Table 

1. In this study, we employed the BT observed by eight 
infrared channels (channels 7-14) as the input data to 
train and validate the new proposed DSLR estimation 
model. The CERES Single Scanner Footprint (SSF) 
product provides cloud products and radiation flux 
products in each CERES field of view (approximately 
20 km). In this study, we employed the calibrated 
CERES SSF FOV all-sky DSLR product as the 
reference data to train the machine learning model. 
 

2.2 Reanalysis Data 
 

ERA5 is a fifth-generation atmospheric reanalysis of 
the global climate launched by the European Center for 

Medium-Term Weather Forecasts (ECWMF). ERA5 
reanalysis data provides aggregated values for seven 
parameters: 2-m air temperature, 2-m dew point 
temperature, total precipitation, mean sea level 
pressure, surface pressure, 10-m u-component of wind, 
and 10m v-component of wind. This study employed 2-
m air temperature and 2-m dew point temperature from 
ERA5 hourly data on single levels as input data to 

estimate DSLR.  

 
2.3 Site Observations 
 
This study selected three observation network sites to 
calibrate the CERES SSF FOV all-sky DSLR reference 
products to build a training dataset. Based on the quality 
control documents of the observation sites, six sites 

were used to validate and calibrate the CERES SSF 
FOV all-sky DSLR products including the Arou 
Observation Site in the WATER, the Daxing 
Observation site, and Miyun Observation site in the 
HAIHE, the Dunhuang Observation Site, Linze 
Observation Site and Xiyinghe Observation Site in the 
CARN. Meanwhile, the Dashalong Observation Site 
and Huazhaizi Observation Site in the Water were used 

to validate the estimated DSLR under all-sky 
conditions.  
 
3 METHOD 
 
The goal of this study is to estimate DSLR under all-
sky conditions from BT data of FY-4A AGRI and near-
surface air temperature (Ta) and dew point temperature 

(Td) of reanalysis data using the GA-ANN model. First, 
determine the training data set of the model, in which 
the input data are the BT data of FY-4A AGRI and Ta 
and Td in the reanalysis data and the output data are 
field observations. However, due to the limited number 
of observation sites, we use the CERES SSF FOV all-
sky DSLR product corrected by field observations as 
the output data to train the model. Second, the GA-

ANN algorithm is used to train the model, and the 
cross-validation method is used to verify the accuracy 
of the trained model. Finally, the DSLR under all-sky 
conditions is estimated using the trained model, and the 
estimated all-sky DSLR was validated with in situ 
measurements. 
This study used the observation data of six field sites to 
correct the CERES SSF FOV all-sky DSLR products 
within the range of observation sites (30°N to 47°N, 

90°E to 117°E), which was used as the input data of the 
training dataset. The calibration formula can be 
expressed as: 
 

DSLR_cal = a ∗ DSLR_org + b           (1) 
 
Where: DSLR_cal is the calibrated DSLR, DSLR_org 
is the original DSLR, a is the calibration parameter, b is 
the offset. To ensure the representativeness of the 

sample, we selected the CERES SSF FOV all-sky 
DSLR product on the first day of each month for the 
two years (2019 and 2020) that matched the FY-4A data 
as the output data of the GA-ANN model. There were 
206870 samples, with 105434 from Terra and 101436 
from Aqua, paired and selected as the output training 
dataset.  
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To maintain the simplicity of the model and reduce the 
uncertainty caused by redundant parameters, this study 
decided to use the BT of the FY-4A AGRI thermal 
infrared channels (channels 7~14) and the Ta and Td in 
the ERA5 reanalysis data as input data, use the 
corrected CERES SSF FOV all-sky DSLR product as 
output data, DSLR under all-sky conditions can be 

expressed as: 
 

 𝐷𝑆𝐿𝑅𝑎𝑙𝑙−𝑠𝑘𝑦 = 𝑓(BT𝑖 , T𝑎 , T𝑑)                        

  𝑖 = 7, 8, 9, 10, 11, 12, 13, 14              (2) 
 
Where DSLRall-sky is the estimated DSLR under all-sky 

conditions, BTi is the brightness temperature of FY-4A 
AGRI band i. Finally, the node values in the hidden 
layer are iteratively simulated to determine the optimal 
neural network. 
 
4 RESULT 
 
4.1 Validation Using in Situ Measurements 

 
In this study, the proposed new method was trained and 
validated on independent sites (no overlap sites exist 
between the training and testing data) as DSLR 
estimation. Two independent sites were used to validate 
the proposed new algorithm, they are the Dashalong 
and Huazhaizi sites of WATER. The BT data from FY-
4A AGRI and the Ta and Td from ERA5 reanalysis data 
were extracted at each site, and then these parameters 

were input into the established DSLR estimation model. 
We estimated DSLR under all-sky conditions for the 
first day of each month in 2020, and then used two 
independent sites (Dashalong and Huazhaizi sites) to 
field-validate the estimates. Note that due to the 
different spatial resolution of the FY-4A satellite data 
and the ERA5 reanalysis data, we used the nearest 
neighbor method to match the two data. If the DSLR 

product with the same resolution as the FY-4A satellite 
data is produced, the reanalysis data needs to be 
downscaled to the same resolution. 
Figure 4 shows a scatterplot of the estimated values vs. 
the measured values at the two sites. The results showed 
that the estimated DSLR agrees well with ground 
measurements, which demonstrates the new proposed 
algorithm can produce a reasonable DSLR under all-

sky conditions. The validation accuracy estimated all-

sky DSLR at all sites with a bias of ﹣4.31 W/m2 and 

an RMSE of 35.28 W/m2. Overall, similar accuracy was 
observed at each site.  
 
4. 2 Comparison with FY-4A Product 
 
Since the FY-4A satellite lacks DSLR products under 
cloudy sky conditions, this study only compares and 
analyzes the DSLR products under clear sky conditions. 

As in Section 4.1, we used the measurement data of the 
two sites (Dashalong and Huazhaizi) for the first day of 
each month in 2020 to verify and compare the FY-4A 
DSLR product. 
The evaluation results of the FY-4A DSLR against 
ground observations at all sites are shown in Figure 5, 
it can be shown that the FY-4A clear-sky DSLR 

exhibits a relatively large bias (-16.27 W/m2) and 
RMSE (41.68 W/m2). The new method proposed in this 
study estimates DSLR under all-sky conditions with 
higher accuracy than the FY-4A clear-sky DSLR 
product. 
 

 
 

 
 

 
Figure 4. Scatterplot of the estimated all-sky DSLR vs. 
ground DSLR measurements. 
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Figure 5 Scatterplot of the FY4A clear-sky DSLR vs. 
ground DSLR measurements at all two sites. 
 

4. 3 Comparison with CERES Product 
 
To further evaluate the performance of the newly 
proposed DSLR estimation method, the Clouds and the 
Earth’s Radiant Energy System Synoptic (CERES-
SYN), Edition 4A, DSLR product was employed for 
comparison. The CERES-SYN provides global hourly 
1°×1°gridded top of the atmosphere, in-atmospheric 

(profile), and surface fluxes, the surface fluxes are 
produced using the Langley Fu-Liou radiative transfer 
model based on inputs from MODIS, geostationary 
(GEO) imagers, and the Goddard Earth Observing 
System (GOES) Data Assimilation System reanalysis 
(Doelling et al. 2016). In this study, the all-sky hourly 
DSLR from CERES-SYN products was compared with 
the newly proposed DSLR estimation method. 

 
Figure 6 Scatterplot of estimated all-sky DSLR vs. 
CERES SYN 1deg DSLR product. 
 
Figure 6 shows the comparison results of the newly 
proposed method estimated DSLR and CERES-SYN 
DSLR at two sites in 2020. The comparison analysis 

result shows that the estimated DSLR from the 
proposed method has a good agreement with the 
CERES-SYN DSLR product, the bias and RMSE are 
0.86 W/m2 and 26.87 W/m2, respectively. 

5 DISCUSSION 
 
This study develops a DSLR estimation method for all-
sky conditions based on the BT data of the FY-4A 
AGRI and the Ta and Td from the ERA5 reanalysis data. 
The FY-4A AGRI infrared channel (bands 7 ~ 14) 
provides BT data, which can be used to reflect 

information such as water vapor, clouds, and land 
surface temperature. In addition, the Ta and Td were 
added in this study to improve the performance of the 
model. In order to reflect the importance of each 
variable, we used principal component analysis to 
analyze the contribution ratio of each variable. The 
results show that infrared channels (bands 7 ~ 14) have 
a similar contribution ratio. We also analyzed the 

correlation between each variable and DSLR and found 
that the correlation is similar, so we take the BT of 
infrared channels (bands 7 ~ 14) as the input parameter. 
Due to the limitation of FY-4A satellite data download 
and its short in-orbit time (launched in December 
2016), it is impossible to use the measured site data to 
establish an estimation model.  
We use the corrected CERES SSF FOV all-sky DSLR 

data to replace the measured data, although the 
corrected DSLR has good accuracy compared with the 
measured data (bias is -0.06 W/m2, RMSE is 17.68 
W/m2). However, there is a certain gap with the 
measured data, which will inevitably lead to estimation 
errors. By comparing the estimated DSLR and CERES 
SYN products, it is found that the two products have 
high consistency, which shows that the algorithm 

proposed in this study can achieve high accuracy. If the 
long-time series of FY-4A observation data and 
measured data can be downloaded to establish an 
estimation model, a higher estimation accuracy can be 
obtained. Meanwhile, the spatial resolution of CERES 
SSF FOV all-sky DSLR data used to build the 
estimation model is 20 km, while the spatial resolution 
of FY-4A AGRI BT data is 4 km. When the model is 
established, in order to ensure the consistency of the 

data, we aggregate the BT data to a spatial resolution of 
20 km, which leads to uncertainties in the estimation of 
DSLR. 
 
6 CONCLUSIONS 
 
This study developed a new method for estimating 
DSLR under all-sky conditions by using the BT 

observations from FY-4A AGRI thermal channel data 
along with the Ta and Td from ERA5 reanalysis data, 
the estimation model was established based on the GA-
ANN algorithm. Due to the small number of 
observation sites and the limitation of FY-4A data 
download, the calibrated CERES SSF FOV all-sky 
DSLR product was used instead of site measured data 
as the targets, the BT, Ta and Td are used as inputs. 
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Cross-validation was used to verify the performance of 
the new proposed estimation model, the bias and RMSE 
estimated by the new proposed method were -0.03 
W/m2 and 15.81 W/m2, respectively.  
The new proposed method estimated all-sky DSLR are 
validated by the two independent observation sites. The 
all-sky DSLR retrieval accuracy in terms of bias and 

RMSE are -4.31 W/m2 and 35.28 W/m2, respectively, 
which is comparable and even better than the FY-4A 
clear-sky DSLR product. In addition, the estimation 
results were compared with CERES SYN all-sky DSLR 
products, and the results showed that the bias and 
RMSE of the two products are 0.86 W/m2 and 26.87 
W/m2, which indicates that the estimated DSLR is in 
good agreement with the CERES product. Compared 

with the 1° spatial resolution of the CERES SYN all-
sky DSLR product, the product estimated in this study 
has a spatial resolution of 4 km, which has better spatial 
and temporal resolution and can show more detailed 
spatial variation. 
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ABSTRACT – Land surface temperature (LST) is an important physical variable at the land surface-atmosphere 

boundary and a key input parameter for many geochemical models. All-weather LST products can be beneficial 

for enhancing the temporal resolution of remote sensing products of surface evapotranspiration, soil moisture, 

and net radiation. Through combining MODIS data and microwave AMSR2, the 10 km daily LST estimation 

models were constructed by using the deep neural network (DNN) algorithm for cloud and cloud-free conditions. 

In-situ observations of 143 sites in the AmeriFlux and FLUXNET networks were used to evaluate the accuracy of 

LST estimation by the DNN model. The results demonstrated that the DNN model could effectively establish the 

relationship between satellite data (AMSR2 and MODIS) and LST. Compared with the in-situ observations of LST, 

the estimated LST under clear sky and cloudy sky presented a root mean square error (RMSE) of 2.4 °C and 3.07 

°C, respectively, which could explain 94%-97% of the LST variation. 

 
INTRODUCTION 
 
Land surface temperature (LST) model based on 
thermal infrared remote sensing cannot effectively 
retrieve the LST under cloudy sky, and thereby is 
greatly limited in many applications, especially for 

those that require both high temporal resolution and 
dense spatial coverage of the LST (Li et al. 2013).  
Presently, LST can be retrieved by three main 
approaches, including those from in-situ measurements, 
from satellite observations, and by model simulations 
(Phan and Kappas 2018; Yan et al. 2020; Yu et al. 
2022). In-situ measurements are not influenced easily 
by weather and can provide continuous observation of 
LST variations, but do not provide extensive spatial 

coverages (Ermida et al. 2019). The model simulation 
approaches can estimate LST at a global level with a 
continuous spatio-temporal scale, but are typically 
outputs at a coarse resolution and the models are 
generally complex with a large number of input 
parameters, thus requiring considerable computational 
cost (Liu et al. 2021). The development of regional or 
global scale LST models based on satellite remote 

sensing technology can achieve continuous spatial and 
temporal LST estimations that have a broader 
application in practice than observations from in-situ 

sites (Yu et al. 2022). As the thermal infrared radiation 
cannot penetrate the clouds, the LST models based on 
thermal infrared remote sensing cannot effectively 
retrieve the LST in the cloudy sky, and thus cannot meet 
the demand of its all-weather application. The passive 
microwave remote sensing can reduce atmospheric 

influence, and the surface microwave radiation can be 
likely to transmit through the clouds, which has obvious 
advantages to retrieve LST when using remote sensing 
datasets (Mo et al. 2021). Recently, machine learning 
techniques have been widely applied in hydrological 
process models, energy balance models, and climate 
forecasting systems with their robustness in solving 
complex nonlinear structures (Peng et al. 2022). The 
commonly applied machine learning techniques include 

the Random Forest (RF), Artificial Neural Network 
(ANN), Deep Neural Network (DNN), Convolutional 
Neural Network (CNN), etc. 
This paper aims to combine MODIS and AMSR2 
remote sensing data to retrieve high-accuracy LST 
separately in the clear and cloudy skies by the DNN 
technique. There are 143 in situ sites from the 
AmeriFlux network and FLUXNET network used to 

construct the DNN model for estimating LST and to 
evaluate the accuracy of the model. 
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Fig 1. Locations of in-situ sites of AmeriFlux network and FLUXNET Network, and the land cover types in 2020 
(background colored) extracted from the MCD12Q1 
 
2. DATA SOURCES 
 
2.1. In-situ observations 
 
In situ observations of 143 sites from the AmeriFlux 
network (2012-2020) and FLUXNET network (2012-

2014) networks were used to construct the DNN model 
for estimating LST and to evaluate the accuracy of the 
model (Fig. 1). These sites are located mainly in North 
America, Europe, and Asia, and less frequently on other 
continents, and the site observations are usually 
recorded every half hour. All in-situ site observations 
are publicly accessible and free to download 
(AmeriFlux network: https://AmeriFlux.lbl.gov, 

FLUXNET network: https://FLUXNET.fluxdata.org). 
 
2.2. Satellite datasets 
 
The remote sensing datasets used in the study mainly 
included the MODIS datasets and AMSR2 datasets. 
The MODIS datasets included the MODIS/Terra+Aqua 
annual 500 m land cover type product (MCD12Q1), the 

MODIS/Terra 16-day 500 m vegetation index 
(MOD13A1), the MODIS/Terra+Aqua daily LST and 
Emissivity products (MOD11A1 and MYD11A1), and 
the global MODIS/Terra annual 250 m surface 
vegetation cover product (MOD44B). All products 
were accessed for free from the MODIS website 
(https://ladsweb.modaps.eosdis.nasa.gov/search/). The 
AMSR2 dataset primarily included the vertical 

polarization bands of L3 brightness temperature (BT) 
products, namely three bands with center frequency of 
23.8 GHz, 6.5 GHz, and 89 GHz that are very relevant 

to LST (https://gportal.jaxa.jp/-gpr/). The brightness 
temperature product has a spatial resolution of 10 km 
and a temporal resolution of daily scale. In addition, a 
1 km DEM product from GMTED2010 was selected as 
auxiliary data for the study. 
 

3. METHODS 
 
3.1. Data preprocessing 
 
The data pre-processing process in this study included 
pre-processing of in-situ observations and pre-
processing of remote sensing data. The pre-processing 
of in-situ observations included data quality-control 

and time zone conversion. Quality-control was 
designed to remove the interpolated data and observed 
invalid (values of -9999) data in the in-situ 
measurements. The time zone conversion was made to 
convert the local time of the in-situ site observations to 
local solar time so that it could be directly matched with 
satellite observations. The pre-processing of remote 
sensing data focused on interpolating and smoothing 

the image data. Because the Normalized Difference 
Vegetation Index (NDVI, MOD13A1) was at daily 
scale and had some quality problems, this study first 
obtained the daily NDVI by temporal interpolation and 
then smoothed by Savitzky-Golay (Chen et al. 2004) 
method. 
 
3.2. In-situ LST derivation 

 
The in-situ observed LST can be inferred from the 
measured long-wave radiation combined with the 
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surface emissivity retrieved from the satellite based on 
the radiation balance (Liang 2005), which is used as the 
training target and validation data for the DNN model, 

as expressed： 
1/4

(1 )lu ld
s

R R
T





− − 
=  
 

           (1) 

31 31 32

2

32 32

0.273 1.778 1.807

                        1.037 1.774

s   

 

= + −

− +
        (2) 

where Ts is the land surface temperature, Rlu and Rld are 
the upswelling and downswing longwave radiations, 
respectively, σ is the Stefan Boltzmann constant 
(5.67·10-8 Wm-2K-4) is the land surface emissivity, and  
ε31 and ε32 are the emissivities of band 31 and band 32, 
respectively. 
 
3.3. DNN model building 

 
Combined with the MODIS and AMSR2 remote 
sensing data, the DNN was used to directly establish the 
relationship between remote sensing data and in-situ 
LST. In reference to existing studies, variables that may 
be closely related to LST were used as input data for the 
DNN model, which came from MODIS including 
percent tree cover (PTC, MOD44B), NDVI, and 
emissivity (ε31and ε32), sensor zenith angle (SZA), and 

MODIS LST (LSTmodis) product from MOD11A1 and 
MYD11A1. Here, the (LSTmodis) was taken as input to 
improve the accuracy of the DNN model. The data from 
AMSR2 included brightness temperature products with 
center frequency of 23.8 GHz, 6.5 GHz, and 89 GHz. 
In addition, DEM was also considered as an input 
parameter for the DNN model. The DNN model 
expressions for estimating the clear sky LST (LSTclear) 

and cloudy sky LST (LSTcloudy ) are: 
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32
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The sample data extraction of DNN models required 
matching the longitude and latitude information of the 
sites with the remote sensing data according to time, 
thereby obtaining the image pixel values at the 
corresponding spatial locations of the images. Note that 
all image pixel values were extracted from the original 
resolution images and the image pixel with 
inhomogeneous land cover types in the 3*3 grid were 

removed according to the IGBP classification of 
MCD12Q1. Total sample data of 168,652 samples were 
obtained in this study, and the time coverage of the data 
ranged from May 2012 to December 2020. The sample 
data was then split into training data and validation data 
by 3:1 using random sampling, with the training data 

used to train the DNN model and optimize the model 
hyperparameters, and the validation data used to 
evaluate the model accuracy. Considering the stability 
of the model and the estimation accuracy, we 
determined the optimal neural network structure and 
hyperparameters in this study as shown in Table 1.  
 

Table 1 Deep neural network (DNN) structure and 
hyperparameters 

Hyperparameters Value 

hidden layers 100-80-40-20-10 

activation function Rule 

batch-size 256 

max epoch 15000 

 
4. RESULTS AND DISCUSSION 
 

Fig.2 (APPENDIX) shows the scatter density plots of 
the LST estimated by the DNN model against in-situ 
observations under clear sky and cloudy sky. The 
results indicated that the LST estimated by the DNN 
model under clear sky and cloudy sky agreed well with 
the in-situ observations, which were located near the 
1:1 line and could explain 94%-97% of the LST 
variations. The root mean square error (RMSE) in the 

validation of the DNN model estimated LST under clear 
sky and cloudy sky was 2.4 °C and 3.07 °C, 
respectively, and the mean absolute error (MAE) was 
1.8 °C and 2.32 °C, respectively. The mean bias error 
(MBE) could be ignored in both cloudy and clear sky. 
Note that the overall validation accuracy of the 
estimated LST under clear sky outperformed that of the 
estimated LST under cloudy sky. The worse results of 

cloudy-sky DNN model were probably caused by the 
complex atmospheric conditions, while the clear sky 
DNN model had the MODIS LST product as input that 
could improve the accuracy. 
Fig 3. (APPENDIX) presents the temporal trend of the 
estimated LST from the DNN model versus in-situ 
observations for different land cover types (recording 
time > 5 years) under clear sky and cloudy sky. The 
temporal trend diagram demonstrated that the LST 

estimated by DNN was consistent with the variation of 
in-situ observations, and the LST during clear sky was 
significantly higher than that under cloudy sky. The 
LST exhibited significant seasonal variations in 
interannual cycle, with the LST peaking at 60°C in 
summer and decreasing to less than 0°C in winter, with 
lower LST in areas with higher vegetation cover or 
sufficient water supply (e.g., forest or wetland). 
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Fig 2. Scatter density plots of estimated LST by deep neural network (DNN) model against in-situ observations of 
LST under clear sky and cloudy sky 

 
Fig 3. Temporal trend of estimated LST for different land cover types from the deep neural network (DNN) model 
with in-situ observations of LST under clear sky and cloudy sky 
 
5. CONCLUSIONS 
 

The DNN model could effectively construct the 
relationship between satellite data (AMSR2 and 
MODIS) and LST, and obtain better accuracies. The 
DNN model combining thermal infrared remote 

sensing and microwave remote sensing data may 
overcome the deficiency of the former in retrieving LST 

under cloudy sky and achieve all-weather LST 
estimations, which will facilitate the continuous 
monitoring of the Earth's LST. 
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ABSTRACT: Hyperspectral thermal infrared (HTIR) remote sensing data offers a wealth of spectral information, 
which is getting more and more attention. However, there must be redundant information because of the significant 
connections between HTIR channels. And there are few channel selection methods for retrieving land surface 
parameters. Therefore, we employ the stepwise iteration methodology based on information content (SIIC) to 
choose the channels more sensitive to land surface parameters. Based on the selected channels, land surface 
temperature (LST) and emissivity (LSE) are synchronously inversed using machine learning method and get 

satisfactory accuracy. Consequently, the findings of this research can be used to guide the channel selection of a 
HTIR sensor for land surface observation. 
 
 
1. INTRODUCTION 
 
Thanks to the various channels of Hyperspectral 
thermal infrared (HTIR) remote sensing data, it is 

feasible to extract land surface temperature (LST) and 
emissivity (LSE) at the same time. However, there must 
be redundant information because of the significant 
connections between HTIR channels. Therefore, 
channel selection is one of the key problems in the 
research of hyperspectral remote sensing inversion (Li, 
et al., 2013). For hyperspectral remote sensing data, the 
widely used channel selection methods include 

stepwise iteration method (Rodgers, 1996; Crevoisier, 
2003), Jacobian method (Aires, et al., 2002), Manually 
selected method (Fourrié and Thépaut, 2002) and so on. 
Moreover, the stepwise iteration methodology based on 
information content (SIIC) is considered to be the best 
method for channel selection (Rabie F, 2002). 
However, the above channel selection methods mainly 
serve the inversion of atmospheric profile. So far, there 
are few methods to select the channels for surface 

information retrieval. The majority of channel selection 
methods for retrieving land surface parameters still rely 
on the prior knowledge and choose channels that are 
mainly in the atmospheric window, which lacks a 
quantitative representation of the land surface 
information. 

Therefore, we employ the SIIC to choose the channels 
more sensitive to land surface information in this study. 
In addition, the simultaneous inversions of LST and 
LSE are effectively accomplished from the simulated 

on-board radiance data using Artificial Neural Network 
(ANN). Based on this study, a reasonable channel 
selection scheme is provided for LST and LSE 
inversion. 
 
2. DATA AND METHODOLOGY 

 
The radiative transfer equation at the thermal infrared 

band is shown in Equation 1. 
 

𝐿𝜆 = 𝜀(𝜆)𝜏(𝜆)𝐵(𝜆, 𝑇𝑠) + 

(1 − 𝜀(𝜆))𝐿↓(𝜆)𝜏(𝜆)+ 𝐿↑(𝜆)     (1) 
 

Where, Lλ is the at-sensor radiance at wavelength λ. ε is 
the LSE. τ is the atmospheric transmittance. L↓ and L↑ 
are the atmosphere downwelling radiance and 
upwelling radiance. And B(λ,Ts ) is the Planck function 
at land surface temperature Ts and wavelength λ. 
Based on equation (1), the HTIR data are simulated in 
this study. The atmospheric simulation data are 
generated by using TIGR database and MODTRAN 

5.2. Based on ASTER spectral library, the emissivity 

   172 



spectrum curves of 100 typical ground objects were 
selected. The spectral range is 8-12.5 μm, and the 
channel interval is set to 0.05 μm, and a total of 91 
channels are generated. Combined with the LST 
generated by perturbation and the channel response 
function, the simulated data of HTIR data are obtained. 
Based on the simulated data, the channel subsets are 

further selected. The channel numbers and locations 
were determined when the information content is 
saturated based on SIIC method. Further, the 
information content is defined as the entropy difference 
between the states before and after observation: 
 

𝐻 = 𝑆(𝑃1) − 𝑆(𝑃2) =
1

2
ln|𝑆𝑎| −

1

2
ln|𝑆̂| = −

1

2
ln|𝑆̂𝑆𝑎

−1|   (2) 

 
Where, 𝑆̂ is the post-observation covariance matrix, Sa 
is background field covariance matrix. In this 
experiment, US76 standard atmospheric profile is used 
to generate background field data. And 𝑆̂ can be 

calculated from the background field covariance 
matrix: 
 

𝑆̂ = 𝑆𝑎 − 𝑆𝑎𝐾
𝑇(𝐾𝑆𝑎𝐾

𝑇 + 𝑆𝑒)
−1𝐾𝑆𝑎         (3) 

 

Where, K is the weight function matrix. Se is the 
observation error covariance matrix. 
The information content of a single channel is 
calculated instead since computing the information 

content of all combinations would need too much 
computing power. Remember that a row vector k in the 
weight function matrix K is the weight function 
corresponding to the channel, and se is the diagonal 
element of the corresponding position in Se, which 
represents the observation error variance of the channel. 
And then, the post-observation error covariance matrix 
of one channel is calculated: 

 

𝑆̂ = 𝑆𝑎 − 𝑆𝑎𝐾
𝑇(𝑘𝑆𝑎𝑘

𝑇 + 𝑠𝑒)
−1𝑘𝑆𝑎       (4) 

 

Where, 𝑘𝑆𝑎𝑘
𝑇 + 𝑠𝑒 is a single value. So the 

information content of a single channel can be 
calculated by the following formula (5). 
 

𝐻 = −
1

2
𝑙𝑛 |𝐼 −

(𝑘𝑆𝑎)
𝑇𝑘

𝑠𝑒+𝑘(𝑘𝑆𝑎)
𝑇
|  (5) 

 

The channel with the maximum H is to be selected in 
each iteration. 
In order to bypass the atmospheric correction, some 
scholars have successfully used regression method 
(Zhou, et al., 2002, 2011; Goldberg, 2003), multi-
channel method (Zhong, et al., 2016), machine learning 
or deep learning methods (Wang, 2013; Wang, et al., 
2022; Aires, 2001, 2002; Lan, et al., 2020) to directly 

retrieve LST from hyperspectral data. Machine learning 
can deal with high complexity and nonlinear ill-

conditioned inversion problems, which can bypass the 
complex computation process and obtain satisfactory 
inversion results. For parameters inversion study, 
neural network has been widely used in thermal infrared 
remote sensing. Research shows that in most cases, the 
inversion accuracy of neural network is better than that 
of traditional linear regression model, and the inversion 

feasibility is high. Therefore, Artificial Neural Network 
(ANN) is selected for synchronous inversion of LST 
and LSE.  
 
3. RESULTS 

 
Based on the SIIC, we calculated the information 
content of the 8-12.5μm spectrum. Figure 1(a) showed 

the process of calculating the information content. The 
channel corresponding to the highest point of each 
information spectrum is the channel selected in one 
iteration. The information spectrum closer to the top is 
calculated earlier. The pink curve represents the 
information spectrum when the first channel is selected. 
For the 8-12.5μm spectrum segment, the maximum 
information content is 3.1015 at 9.1945μm. Then, on 

the basis of the first channel selected, the information 
content of the next channel is calculated, that is, the 
yellow curve. By comparing the first and second 
information spectrum curves, it can be seen that after a 
certain channel is selected, the information contents of 
other channels near this channel are significantly 
reduced due to their high similarity with the selected 
channel, and the information content of other channels 

is also reduced accordingly. Therefore, it can provide a 
certain reference for the selection of inversion channels 
of LST and LSE. Finally, the first 47 channels, which 
accounts for 85% of the total information content of all 
channels, are selected to retrieve LST and LSE. 
Based on the simulated data, the LST and LSE were 
retrieved from the on-board radiance using ANN 
methods. Figure 2 shows the performance of the ANN 
model on the training and test sets. As a result, the 

RMSE of the retrieved LSTs is 1.917K in the training 
set and 1.922K in the test set, and the RMSEs of the 
retrieved LSEs are both 0.011 in the training set and the 
test set. The training set and test set keep the same 
precision level, which shows that the model has great 
stability and robustness. 
To verify the sensitivity of the ANN model to different 
noises, we add two kinds of white gaussian noises to the 

data: noise-equivalent temperature difference (NE∆T) 
of 0.1K and absolute calibration error of 1K. The results 
are shown in Table 1. After adding the NE∆T, the 
RMSE increases by 0.08K for LST, and 0.001 for LSE. 
After adding the calibration noise, the RMSE increases 
by 0.08K for LST, and 0.001 for LSE. Comparatively 
speaking, ANN is not very sensitive to NE∆T and 
calibration noise. 
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Figure 1. The calculation process of distribution iteration method. (a) Information spectrum. (b) The change of 
the information with the number of selected channels by SIIC and randomly selection. 
 

        

  
Figure 2. Model Result of ANN. 
 
 
 

Table 1. the RMSEs for the ANN model 
 

Parameter Dataset 
Without 

noise 
NE∆T 

Calibration 
noise 

LST 
Train 1.9171 1.9993 2.4683 
Test 1.9220 2.0033 2.4778 

LSE 
Train 0.0106 0.0117 0.0110 

Test 0.0107 0.0118 0.0110 

 

4. CONCLUSIONS 
 

Based on the SIIC, the channels for retrieving land 

surface parameters from hyperspectral thermal infrared 
data are selected in this paper. The first 47 channels 
with the highest information content are selected. And 
then the integrated inversion models of LST and LSE 
were constructed based on the machine learning 
method, ANN. According to the results, the selected 
channels can be used as the optimal channel for surface 
parameters inversion, which can achieve inversion 

accuracy of 1.9K for LST and 0.01 for LSE. And the 
model has certain anti-noise property. 
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ABSTRACT - The solar-induced vegetation fluorescence, emitted by the Chlorophyll a molecules as a small 
radiative flux in the 650–850-nm range has become new quantitative information in the understanding of 
vegetation status from the leaf to the landscape and global scales. However, to quantitatively exploit the obtained 
fluorescence signal and obtain the link between vegetation fluorescence and the core photosynthetic light reaction 
dynamics, advanced signal processing is required. Full spectral information in the region 500-800 nm is hereby 

used as input for the processing of the top-of-canopy fluorescence emission from a bottom-up leaf level approach. 
As part of the FLEX L1B-to-L2 Algorithm Retrieval and Product Development Study, retrieval strategies for 
photosynthesis-related products are being developed based on the synergistic FLEX–FLORIS and Sentinel 3–
OLCI spectral information. One of these products is the fluorescence quantum efficiency which is the ratio between 
the emitted fluorescence and the absorbed radiation that triggers the emission. Retrieved FQE values at the canopy 
level are small (1-2%) but promising validation results are achieved. The apparent FQE indicates the 
downregulation of the excitation pressure on the Chlorophyll molecules and the energy provided to the final 
reaction centres. Hence, FQE provides a first proxy for the photosynthetic efficiency of the vegetation surface. 

Despite the relationship tends to be more complex due to the activation of non-photochemical quenching 
mechanisms which changes the qualitative coupling between fluorescence and photosynthesis, FQE is a first proxy 
of the downregulation of harvested light. 
 
 
1 INTRODUCTION  

 
Solar-induced vegetation fluorescence, emitted 

by the Chlorophyll a molecules as a small radiative flux 
in the 650–850-nm range is providing new quantitative 
information in the understanding of vegetation status 
from the leaf to the landscape and global scales. The 
goal is to use the canopy-leaving fluorescence signal as 
an unbiased estimate of the photosynthetic activity of 
the underlying vegetation.  

As part of ESA’s Fluorescence Explorer (FLEX) 
L1B-to-L2 Algorithm Retrieval and Product 

Development Study, retrieval strategies for 
photosynthesis-related products are being developed 
based on the synergistic FLEX–FLORIS and Sentinel 
3–OLCI spectral information. For an overview of the 
FLEX mission, the reader is referred to Moreno et al. 
(2016) and Drusch et al. (2017). The Fluorescence 
Imaging System (FLORIS) imaging instrument 
onboard FLEX will cover the wavelength range from 

500 to 780 nm with a spectral sampling ranging from 
0.1 to 2 nm and a spectral resolution of 0.3 within the 

O2 absorption bands and up-to 3 nm within the full 
region (Coppo et al. 2017). The spectral band 
characteristics and region will allow the 

disentanglement of the vegetation fluorescence (F) flux 
(often referred to as solar-induced fluorescence, or SIF) 
from the reflected radiance. However, interpreting the 
retrieved fluorescence signal at any remotely observed 
scale, and additionally contextualizing it within the 
origin of the photosynthetic light reactions, is not a 
straightforward task. To improve the estimation of 
actual photosynthesis from the future spaceborne 
mission based on the retrieved top-of-canopy F 

information, additional steps are required. The primary 
requirements are the quantitative description of (1) the 
real surface emission, accounting for all the photon 
losses along the path between the sites of emission and 
detection, and (2) the real surface absorbed energy 
triggering this emission. Resolving these quantitative 
components will enable the calculation of the actual 
quantum yield of the fluorescence emission process, an 

essential step to get to photosynthesis (Van 
Wittenberghe et al., 2021). The goal of this work is to 
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propose an algorithm for the quantitative retrieval of the 
fluorescence quantum efficiency, based on the essential 
retrieval of the photosynthetically absorbed photons 
from FLORIS LR data, to supplement the solar-induced 
fluorescence retrieval from the FLORIS HR data of the 
future FLEX mission.  
 

2 MATERIAL AND METHODS  
 

2.1 Product definition: apparent or TOC fluorescence 
quantum efficiency 
 

The (Apparent) Fluorescence Quantum Efficiency 
(FQE) of the Chla molecules, expresses the fate of an 
absorbed photon  to be eventually (apparently, at the 

TOC) emitted as an F photon, requiring the  
quantification of the number of absorbed photons 
triggering the emission (APAR Chl product). FQE is a 
unitless parameter based on the ratio of the fluoresced 
to absorbed photon flux, expressed as JF and JA, 
integrated over wavelength (λ) and angle (ω): 
 

FQE=(number of photons emitted)/(number 

photons absorbed) 

(1) 

=
∫ ∫ J

F
 𝑑𝜆 𝑑𝑤[photons m

–2 

s
–1

]
850

650𝛺

∫ ∫ J
A

 𝑑𝜆𝑑𝑤[photons m
–2 

s
–1

]
780

400𝛺

        (2) 

 
2.2 Step 1: fitting retrieval of fAPAR Chl 

 
The total amount of light energy absorbed by the 
leaf/vegetation and its fraction (fAPAR_total, -) is 
composed of both photosynthetic and non-
photosynthetic absorbed fractions (Figure 1). Only the 
photosynthetic light absorption relates to the energy 
absorbed by the antenna complexes, which is further 
(fully or partly) used for driving the carbon reactions. 
Here, we are interested in the energy absorbed by the 

Chlorophyll (Chl) pigments, the main photosynthetic 
light absorbing pigment. In a first approach to extract 
the absorption coefficient µ for Chl (a+b), and in 
particular the red tail part of it, a power function was 
applied to the absorbance (A) spectra of leaves with 
variable ratios of Chl a/Chl b contents: 
 

                                                     (3) 

 
Where n is a positive number. 
This average pigment absorption coefficient was further 
used in a non-negative least squares fitting algorithm 
whereby the fitted absorbance spectrum A(λ) is 
estimated by the power function model F(x(λ)) using 

weighted factors b1 and b2 applied to the pigment 
component spectra xi: 

                                                 (4) 

 

 
Fig.1 Design of the in vivo absorption coefficient of Chl 
a +b as a combined spectrum based on (i) in vitro 
absorption shapes of Chl a and Chl b and (ii) the in vivo 
absorbance shape of the red-edge 
The error between the fitting of the observations y and 

the model F(x(λ)) is hereby minimized through the 
parameters ai and bi by a least square function: 

(5) 

Hereby we test the fitting algorithm first on leaf spectra 
using the FLORIS LR λ = [500-780 nm] range. Using 
the solved weighted factors b1 and b2, the modelled 
absorbance is converted to the full photosynthetically 
active region, based on the   pigment absorption for the 
full PAR range, xi [400-800 nm] (Fig. 2).  

 
Fig.2 Measured (blue line) and fitted absorbance (red) 
based on the absorption feature for Chl (yellow), first 
for the FLORIS LR range (left), and further for the full 
PAR range (right) 
 
2.2 Step 2: retrieval of APAR Chl 

 
In a second step, the intermediate fAPAR product, 
obtained from step 1, is used to calculate the APAR 
product. To do so, the vector of the fraction of absorbed 
light obtained in the first step is multiplied by the 
incoming at-surface irradiance [400-780 nm]. and 
converted to photon units:  

(6)  
These radiometric units are further converted to photon 
flux units and integrated over the full PAR range (400-
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750 nm). Note that currently there is no distinguishing 
between the diffuse and direct irradiance for the APAR 
calculation. We calculate the APAR for Chl, 
respectively as: 

(7) 

The final product is given as the PAR integrated sum of 
the photons absorbed (Table 1). 
 

 
Table.1 Design of the in vivo absorption coefficient of 
Chl a +b as a combined spectrum based on (i) in vitro 
absorption shapes of Chl a and Chl b and (ii) the in vivo 
absorbance shape of the red-edge 
 
2.3 Step 3: Calculation of FQE based on full range  

Fluorescence and APAR Chl 
 
In a last step we calculate the ratio between the full-
range Chl fluorescence emission, a product of the 
earlier steps in the L2 processing chain, and the 
developed APAR Chl product, according Eq. 2. 
 
2.4. End-to-end scene generation and validation of FQE 

 
The generation of synthetic scenes is one of the core 
parts of an End-to-End Simulator (E2ES), providing 
scenes (ground truth) as would be observed by satellite 
instruments and used as reference against simulated 
retrieved mission products (Tenjo et al., 2018). For 
FLEX, an E2ES has been developed to generate 
appropriate scenes that allow assessing the performance 

of the ground data processing chain. As a component of 
the E2ES, a surface definition module provides in the 
forward modelling scheme a TOC reflectance, 
fluorescence and temperature. As part of this module 
the SCOPE model is used to simulate the surface 
fluorescence properties (Vilfan et al., 2016).  
Fluorescence quantum efficiency is an input parameter 
of the forward modelling, with typical values in the 

range of [0-0.015] at the leaf level.  
 
3 RESULTS  

 
3.1 Leaf fitting of fAPAR Chl 

 
The fAPAR fitting algorithm was developed and tested 
for pure leaf reflectance spectra, using a single species 

dataset of beech leaves (n=76), obtained with an 
integrating sphere set-up (Figure 3). Fitting the Chl 
absorption feature used results in a mean RMSE 
obtained of 0.0261 ± 0.0071 (Figure 4).  
 

 
Figure 3. Example subset results of the absorbance 
fitting (red solid line) of the FLORIS LR bands based 
on transformed reflectance spectra (blue solid line) 
 

 
Figure 4. Absolute error of the spectral fitting at leaf 
level for the entire FLORIS LR spectral range 
 
The absolute error for the fitted band range shows 
higher errors in the PRI range (500-550 nm) and still 
some error of 0.02 around the red-edge. These higher 

errors can possibly be devoted to (1) missing absorption 
features in the fitting algorithm, such as carotenoid 
contributions or dry matter effects, (2) lacking 
description of the Chl a and Chl b absorption features, 
and (3) incomplete description of the Chl a absorption 
behaviour, especially in the region beyond 700 nm. 
 

3.2 FQE Validation of FLEX E2E scene  
 

Retrieved (apparent) FQE values at the canopy level are 

small, in the order of 1-2%. These values are in the same 
range as the reference values of the forward simulation, 
which contain four groups of values: 0, 0.52%, 0.9% 
and 1.25% (Figure 5). Being so low values, the relative 
absolute error can reach high values, above 50% 
(Figure 6).    
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Figure 5. FQE retrieved values versus E2ES input 

values 
 

 
Figure 6. Relative error map of the FQE retrieval  
 
4 CONCLUSIONS  

 

Disentangling the absorption of the overlapping 
pigments is shown based on the spectral fitting of the 
FLORIS HR 500-780 nm reflectance product using 
individual pigment absorption features and a non-
negative least squares fitting approach. The spectrally-
resolved fAPAR contribution for Chlorophyll a is 
retrieved. The apparent fluorescence quantum 
efficiency (FQE) is calculated as the ratio of the 

spectrally-integrated fluorescence emission and the 
PAR absorbed by Chl, both converted to photon flux 
units. With these advances in the quantitative 
interpretation of the vegetation fluorescence signal the 
actual light use through photosynthesis and vegetation 
growth with carbon assimilation will be better 
quantified. Hence, by the retrieval of FQE, combined 
with additional information on the dynamic regulation 
of the energy pathways in the light reactions, promising 

opportunities are presented to improve our 
understanding of the vegetation dynamics in the global 
carbon cycle. 
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